Califomia State Polytechnic University, Pomona

Chem 315
Midterm Exam
Winter, 2004
Beauchamp
Name: \qquad

Topic	Total Points	Credit
1. Nomenclature (1)	25	
2. Tautomeric mechanisms, a row pushing, proton transfers, resonance, one in acid and one in base	28	
3. Reactions page using reactions leamed thusfar (20) (you supply either reagents or products)	35	
4. Multistep syntheses using the reactions leamed thus far in the course (possible in 4-5 steps)	25	
5. Complete details of $\mathrm{S}_{\mathrm{N}} 1 / \mathrm{E} 1$ and $\mathrm{S}_{\mathrm{N}} 2 / \mathrm{E} 2$ reactions. Stereoc hemistry, a rrow pushing, carbocations, rea rrangements might be part of the problem	35	
6. Complete a rrow pushing mechanisms, one in acid (rea rangements are possible) and one in base (understanding tautomerization will help)	30	
Total	178	

This is a long exam. It has been designed so that no one question will make orbreak you. The best strategy is to work steadily, starting with those problems you understand best. Make sure you show all of your work. Draw in any lone pairs of electrons, formal charge and curved a rrows to show electron movement. Only write answers on the front of each page. Do your best to show me what you know in the time available.

You cannot teach people anything. You can only help them discover it within themselves.

Califomia State Polytechnic University, Pomona

1. Provide an acceptable name for the following structure. (25 pts)

2. Provide a complete a rrow-pushing mechanism (curved arrows, lone pairs a nd formal charge) to expla in the following ta utomeric transformations. (28 pts/)
a.

b.

Califomia State Polytechnic University, Pomona

3. Fill in the missing product or reagent, as needed, for each reaction below. Do not waste time by writing mechanisms. (35 pts)
a.

$\downarrow \begin{gathered}\mathrm{NaOH} \\ \Delta\end{gathered}$
4. $\mathrm{Na}^{\oplus} \mathrm{H}:^{\ominus}$
$\xrightarrow{2 . \mathrm{CH}_{3}-\mathrm{I}}$

c.

d.

e.

5. $\mathrm{R}_{2} \mathrm{~N}^{\ominus} \mathrm{Na}^{\oplus}$
6. NaNR_{2}
7. $\mathrm{H}_{2} \mathrm{C}=\mathrm{O}$
$\xrightarrow{\text { 3. } \mathrm{WK}}$

$$
\mathrm{SOCl}_{2}
$$

NaBH_{4}

Califomia State Polytechnic University, Pomona

4. Propose a reasonable synthetic method to accomplish the following transformations using any additional materials available from our course. Show a reaction a rrow with appropriate reagents and the product for each step of your synthesis. Do not show mechanisms. (25 pts)
a.

5. a. Show the expected kinds of reaction(s) when 2-bromo-1S,3S-dimethylcyclohexane is reacted with sodium hydroxide in water. If more than one variation of a reaction type is possible, redraw the reactant in the appropriate conformation to clearly demonstrate an arrow-pushing mechanism. Indicate the relative amounts of each product expected. State what mechanism is operating in each case. (16 pts)

Califomia State Polytechnic University, Pomona

5b. Show the expected kinds of reaction(s) when the given structure is reacted with water, alone. Assume that if a more stable intemediate can form, it will and use that intermediate to illustrate any expected reactions. A single intermediate structure can be used to demonstrate all product(s) of a certa in mechanistic type. Indicate the relative a mounts expected of each product. Show all mechanistic steps. State what mechanism is operating in each case. (24 pts)

Califomia State Polytechnic University, Pomona

6. Provide complete arrow-pushing mechanisms for the reactions below. Include curved arrows, lone pairs of electrons and formal charge foreach step. If resonance is present, draw at least one additional resonance structure to show you recognize this feature.
a. Hint: Number your carbons in the reactant and the product in a systematic way. What is the driving force for such a change? (15 pts)

b. Provide a complete a rrow pushing mechanism to show how the product is formed. How many hydrogens a re remaining of the original $3 \mathrm{H}^{\prime}$ s on the methyl in the starting material? (15 pts)

Shoud the wiggly line be a dash, wedge or either?

