## Chem 201 Sample Midterm

Beauchamp
Exams are designed so that no one question will make or break you. The best strategy is to work steadily, starting with those problems you understand best. Partial credit is given for anything done correctly, but no points are given for incorrect answers. Make sure you show all of your work. Draw in any lone pairs of electrons, formal charge and curved arrows to show electron movement where appropriate. Do your best to show me what you know in the time available.

1. Provide an acceptable name for each of the following molecules.

b




2. Draw an acceptable Lewis structure (2D) for the following molecule. Show all single, double and triple bonds with one, two or three lines. Include all lone pairs of electrons as two dots. Include any formal charge, if present. Identify any functional groups by name (i.e. ketone, amide, etc.)
$\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{HCHNOCCHCHCH}_{2} \mathrm{COCCCO}_{2} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{CHO}) \mathrm{CNH}_{3} \mathrm{CHCH}_{3} \mathrm{CHOHCH}_{2} \mathrm{OCHCNCO}_{2} \mathrm{H}\right]^{\oplus}$
3. Draw a 3-D structure for the following molecule. Show bonds in front of the page as wedges, bonds in back of the page as dashed lines and bonds in the page as simple lines. Show orbitals for pi bonds and lone pairs along with their electrons. Identify the hybridization, bond angles and descriptive shape for all numbered atoms.


Atom Shape Hybridization Bond Angles $\# \sigma$ bonds $\quad$ \# bonds $\quad$ \# lone pairs
1

2
3
4
5
4. Write all reasonable 2D resonance structures for the following formulas. Include formal charge where appropriate and use proper curved arrows to show electron movement.
$\mathrm{CH}_{2} \mathrm{CHO}^{\ominus}$
$\mathrm{CH}_{3} \mathrm{CHOH}^{\oplus}$
$\mathrm{CH}_{2} \mathrm{NO}_{2}{ }^{\ominus}$
$\mathrm{CH}_{3} \mathrm{CHNN}$
$\mathrm{CH}_{3} \mathrm{NNN}$
OOO
$\mathrm{HCCCHCHC} \stackrel{\oplus}{\mathrm{H}_{2}}$
$\mathrm{HCCCHCHO}^{\ominus}$
5. Draw an example of each of the following. Use " R " as a carbon portion for unspecified parts of your structures.

1. methyl
2. methylene
3. methine
4. primary
5. secondary
6. tertiary
7. quarternary
8. isopropyl
9. isobutyl
10. sec-butyl
11. t-butyl
12. neopentyl
13. vinyl
14. allyl
15. propargyl
16. phenyl
17. benzyl
18. primary amine
19. secondary amine
20. tertiary amine
21. quaternary ammonium ion
22. Use the given formula $\left(\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{13} \mathrm{~S}\right)$ to draw a molecule with the following functional groups: carboxylic acid, anhydride, ester, acid chloride, amide, nitrile, aldehyde, ketone, alcohol, thiol, amine, ether, chloro, alkene, alkyne and aromatic. Identify each functional group by name. What is the degree of unsaturation?
23. Use the given formula $\left(\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{Br}_{2}\right)$ to write examples of each kind of isomerism: skeletal, positional, conformational, enantiomers, diastereomers.
24. Match the given boiling points with the structures below and give a short reason for your answers.
$\left(-7^{\circ} \mathrm{C},+31^{\circ} \mathrm{C},+80^{\circ} \mathrm{C},+141^{\circ} \mathrm{C}, 1420^{\circ} \mathrm{C}\right)$


2-butanone
$\mathrm{MW}=72 \mathrm{~g} / \mathrm{mol}$


2-methyl-1-butene
$\mathrm{MW}=70 \mathrm{~g} / \mathrm{mol}$

propanoic acid
$\mathrm{MW}=74 \mathrm{~g} / \mathrm{mol}$

KCl
potassium chloride
$\mathrm{MW}=74.5 \mathrm{~g} / \mathrm{mol}$


2-methylpropene
$\mathrm{MW}=56 \mathrm{~g} / \mathrm{mol}$
9. a. Hexane (density $=0.65 \mathrm{~g} / \mathrm{ml}$ ) and water (density $=1.0 \mathrm{~g} / \mathrm{ml}$ ) do not mix. Which layer is on top? Why don't they mix?
b. Carbon tetrachloride (density $=1.59 \mathrm{~g} / \mathrm{ml}$ ) and water (density $=1.0 \mathrm{~g} / \mathrm{ml}$ ) do not mix. Which layer is on top?
10. The melting point of NaCl is very high $\left(\approx 800^{\circ} \mathrm{C}\right.$ ) and the boiling point is even higher ( $>1400^{\circ} \mathrm{C}$ ). Does this imply strong, moderate or weak forces of attraction between the ions? Considering your answer, is it surprising that NaCl dissolves so easily in water? Why does this occur? Consider another chloride salt, AgCl . How does your analysis work here? What changed?
11. Draw all possible chair conformations of cis-1-phenyl-2-methylcyclohexane and trans-1-phenyl-2methylcyclohexane. Which conformation is more stable? Draw it first. Provide a reason for your answer. Draw Newman projections of the most stable and least stable conformations using the $\mathrm{C}_{1} \rightarrow \mathrm{C}_{2}$ and $\mathrm{C}_{5} \rightarrow \mathrm{C}_{4}$ or the $\mathrm{C}_{2} \rightarrow \mathrm{C}_{1}$ and $C_{4} \rightarrow C_{5}$ bonds to sight along. Point out any gauche interactions shown in your Newman projection. Use the table on the next page to determine the gauche energy costs. Using the trans-1-phenyl-2-methylcyclohexane what are the relative percents of each conformation? Sketch an energy diagram that shows how the energy changes with the conformational changes for that isomer.

| Substituent | $\Delta \mathrm{G}^{0}($ A value $)$ |
| :---: | :---: |
| -H | 0.0 |
| $-\mathrm{CH}_{3}$ | 1.7 |
| $-\mathrm{CH}_{2} \mathrm{CH}_{3}$ | 1.8 |
| $-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ | 2.1 |
| $-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ | $>5.0$ |
| -F | 0.3 |
| -Cl | 0.5 |
| -Br | 0.5 |
| -I | 0.5 |
| $-\mathrm{CH}=\mathrm{CH}_{2}$ | 1.7 |
| $-\mathrm{CH}=\mathrm{C}=\mathrm{CH}_{2}$ | 1.5 |
| -CCH | 0.5 |
| -CN | 0.2 |
| $-\mathrm{C}_{5} \mathrm{H}_{6}$ (phenyl) | 2.9 |
| $-\mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{6}$ (benzyl) | 1.7 |
| $-\mathrm{CO}_{2} \mathrm{H}$ | 0.6 |
| $-\mathrm{CO}_{2} \Theta$ | 2.0 |
| $-\mathrm{CHO}^{-}$ | 0.7 |


| Substituent | $\Delta \mathrm{G}^{0}(\mathrm{~A}$ value $)$ |
| :--- | :---: |
| $-\mathrm{CH}_{2} \mathrm{OH}$ | 1.8 |
| $-\mathrm{CH}_{2} \mathrm{Br}$ | 1.8 |
| $-\mathrm{CF}_{3}$ | 2.4 |
| $-\mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{CH}_{3}$ | 1.1 |
| -OH | 0.9 |
| -OCH | 0.6 |
| -SH | 1.2 |
| $-\mathrm{SCH}_{3}$ | 1.0 |
| $-\mathrm{SC}_{5} \mathrm{H}_{6}$ | 1.1 |
| $-\mathrm{SOCH}_{3}$ | 1.2 |
| $-\mathrm{SO}_{2} \mathrm{CH}_{3}$ | 2.5 |
| $-\mathrm{SeC}_{5} \mathrm{H}_{6}$ | 1.0 |
| $-\mathrm{TeC}_{5} \mathrm{H}_{6}$ | 0.9 |
| $-\mathrm{NH}_{2}$ | $1.2\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}\right), 1.7\left(\mathrm{H}_{2} \mathrm{O}\right)$ |
| $-{\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}}^{1.5\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH} 3\right), 2.1\left(\mathrm{H}_{2} \mathrm{O}\right)}$ |  |
| $-\mathrm{NO}_{2}$ | 1.1 |
| $-\mathrm{HgBr}^{-\mathrm{HgCl}}$ | 0.0 |
| -MgBr | -0.2 |
|  | 0.8 |

12. Use a Newman projection of the $\mathrm{C} 3 \rightarrow \mathrm{C} 4$ bond of 2-methyl-4-phenylhexane to show the most stable conformation first. Rotate through all of the eclipsed and staggered conformations. Using the energy values provided in the table below, calculate the relative energies of the different conformations. Plot the changes in energy in the graph diagram provided. Hint: Draw a 2D structure first and "bold" the bond viewed in your Newman projection, then decide your line of sight. What is the relative percent distribution between the 2 lowest energy conformations?


2-methyl-4-phenylhexane

$$
\begin{aligned}
& \Delta \mathrm{G} \approx \Delta \mathrm{H} \\
& \mathrm{~K}_{\mathrm{eq}}=10 \frac{-\Delta \mathrm{H}}{2.3 \mathrm{RT}}
\end{aligned}
$$

| Approximate Eclipsing Energy |  |  |  |  |  |  |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: |
| Values (kcal/mole) |  |  |  |  |  |  |
|  | H | Me | Et | $\mathrm{i}-\mathrm{Pr}$ | $\mathrm{t}-\mathrm{Bu}$ | Ph |
| H | 1.0 | 1.4 | 1.5 | 1.6 | 3.0 | 1.7 |
| Me | 1.4 | 2.5 | 2.7 | 3.0 | 8.5 | 3.3 |
| Et | 1.5 | 2.7 | 3.3 | 4.5 | 10.0 | 3.8 |
| $\mathrm{i}-\mathrm{Pr}$ | 1.6 | 3.0 | 4.5 | 7.8 | 13.0 | 8.1 |
| $\mathrm{t}-\mathrm{Bu}$ | 3.0 | 8.5 | 10.0 | 13.0 | 23.0 | 13.5 |
| Ph | 1.7 | 3.3 | 3.8 | 8.1 | 13.5 | 8.3 |
|  |  |  |  |  |  |  |

most stable conformation

```
\downarrow
```


$\Delta H^{0}=$
$\Delta H^{0}=$
$\Delta \mathrm{H}^{0}=$
$\Delta \mathrm{H}^{0}=$
$\Delta H^{0}=$
$\Delta H^{0}=$
13. For the following set of Fischer projections answer each of the questions below by circling the appropriate letter(s) or letter combination(s). Hint: Redraw the Fischer projections with the longest carbon chain in the vertical direction and having similar atoms in the top and bottom portion. Classify all chiral centers in the first structure as R or S absolute configuration and write an acceptable name for that isomer.

A

B

C

D

E
a. Which are optically active?
b. Which are meso?

| A | B | C | D | E |
| :--- | :--- | :--- | :--- | :--- |
| A | B | C | D | E |

c. Which is not an isomer with the others?
d. Which pairs are enantiomers?
A B C D E
e. Which pairs are identical?
f. Which pairs are diastereomers?
g. Which pairs, when mixed in equal amounts
$\mathrm{AB} \quad \mathrm{AC} \quad \mathrm{AD}$ AE BC BD BE CD CE DE
$\mathrm{AB} \quad \mathrm{AC}$ AD AE BC BD BE CD CE DE
$\mathrm{AB} \quad \mathrm{AC} \quad \mathrm{AD}$ AE BC BD BE CD CE DE
$A B \quad A C \quad A D \quad A E \quad B C \quad B D \quad B E \quad C D \quad C E \quad D E$ will not rotate plane polarized light?
h. Draw any stereoisomers of 2-bromo-3-chlorobutane as Fischer projections, which are not shown above. If there are none, indicate this.
i. Would anything change if, in compound D , the Br was replaced with a Cl group? How about compound A ?
j. The structure of lucknolide B was recently determined (and the absolute configuration of all chiral centers!). It was isolated from the terrestrial bacteria, Streptomyces sp. ANK-289, in screenings for new medicinal lead compounds (Org. Lett. p.3800, 2010). Circle all chiral centers and any other stereochemical features, and calculate the maximum number of stereoisomers possible.


