Name:

(Print your name)

Chem 2010

Spring, 2019
Midterm 1

Copyight 2017 Eni Genurabić

Spring, 2019
Beauchamp
Name \qquad

Problems	Points	Credit
1. Functional Group Nomenclature (1 large structure)	30	
2. Lewis Structures, Resonance, Formal Charge	20	
3. Cyclohexane Conformations, 2 substituents, Newman Projections, Relative Energies, K eq Calculation	32	
4. Newman Projections, Conformational Energies, K eq Calculation	30	
5. Stereochemical Analysis	30	
6. 2D Resonance Structures, 3D Structure, Hybridization, Angles, Shapes, Explain bond energies	32	
7. Types of isomers from a given formula	26	
8. Draw a long 2D structure and identify functional groups	26	
9. Physical Properties	26	
Total	252	

This is a long exam. It has been designed so that no one question will make or break you. The best strategy is to work steadily, starting with those problems you understand best. Make sure you show all of your work. Draw in any lone pairs of electrons, formal charge and curved arrows to show electron movement where appropriate. Do your best to show me what you know in the time available.
"Yesterday I was clever, so I wanted to change the world. Today I am wise, so I am changing myself."

1. Provide an acceptable name for the following molecule. Only specify R and S where shown as 3 D . (30 pts)

1

2. Draw all possible chair conformations of cis-1- amino-2-isopropyllcyclohexane. Make the left most ring carbon C1 and number towards the front. Show all axial and equatorial groups in the first chair. Which conformation is more stable? Provide a reason for your answer. Draw a Newman projections of the most stable conformation using the $\mathrm{C}_{2} \rightarrow \mathrm{C}_{1}$ and $\mathrm{C}_{4} \rightarrow \mathrm{C}_{5}$ bonds to sight along. Point out any gauche interactions shown in your Newman projection. If the axial energy of a isopropyl group is $2.1 \mathrm{kcal} / \mathrm{mole}$ and the axial energy of amino group is $1.2 \mathrm{kcal} / \mathrm{mole}$ and a isopropyl/amino gauche interaction is $0.9 \mathrm{kcal} / \mathrm{mole}$, what is the ratio of the two conformations at equilibrium? Show your work. Sketch an energy diagram that shows how the energy changes (higher to lower) with the conformational changes. ($14 \mathrm{pts}, 32 \mathrm{pts}$ total)

b. Newman projection $\left(\mathrm{C}_{2} \rightarrow \mathrm{C}_{1}\right.$ and $\left.\mathrm{C}_{4} \rightarrow \mathrm{C}_{5}\right)$ - most stable, point out any gauche interactions with the substituent(s) (6 pts)

c. Energy diagram and relative percents $\left(\mathrm{K}_{\mathrm{eq}}=\right.$?) $(6 \mathrm{pts})$

d. Calculate an approximate $\Delta \mathrm{H}$ difference between the two conformations. Use that value to estimate a K_{eq}. (Assume $R=2 \mathrm{cal} / \mathrm{mol}-\mathrm{K}$ and $\mathrm{T}=300 \mathrm{~K}$.) Use energy values provided in the box. Show your work. (6 pts)

The energy table is not shown here.

$$
\begin{aligned}
& \Delta(\Delta \mathrm{H})=4.2-3.3=-0.9 \mathrm{kcal} / \mathrm{mole} \\
& \mathrm{~K}=10 \frac{-(+900)}{1380}=10^{-0.65}=0.22=1 / 4.5
\end{aligned}
$$

4. Use a Newman projection of the $\mathrm{C} 4 \rightarrow \mathrm{C} 3$ bond of 2,4-dimethyl-3-phenyl-4-bromohexane to show the most stable conformation first. Rotate through all of the eclipsed and staggered conformations. Using the energy values provided in the tables below, calculate the relative energies of the different conformations. Plot the changes in energy in the graph diagram provided. Calculate a ratio of least stable to most stable based on ΔH values. Hint: Draw a 2D structure first and "bold" the bond viewed in your Newman projection, then decide your line of sight. (30 pts)

2D Structure (4 pts, provided at cost of points)

Approximate Eclipsing Energy Values (kcal/mole) Some were estimated by me.							
	H	Me	Et	Pr	t-Bu	Ph	Br
H	1.0		(1.5)	. 6	3.0	1.7	(1.2)
Me	1.4	2.5	2.7	3.0	8.5	3.3	2.0
Et	1.5	2.7	3.3	4.0	10.0	3.8	2.4
i-Pr	1.6		4.0	. 8	13.0	8.1	(2.7)
t-Bu	3.0		10.0	13.0	23.0	13.5	7.5
Ph	1.7		(3.8)	8.1	13.5	8.3	(3.0)
Br	1.2	2.0	2.4	2.7	7.5	3.0	2.2

Newman projections (show work, 18 pts): lowest PE

Approximate Gauche Energy Values ($\mathrm{kcal} / \mathrm{mole}$)							
	H	Me	Et	-Pr	$\mathrm{t}-\mathrm{Bu}$	Ph	Br
H	0		(0.2)	0.3	0.7	0.4	(0.0)
Me	0	0.8	0.9	1.1	2.7	1.4	0.6
Et	0.2	0.9	1.1		3.0	1.5	0.7
i-Pr	0.3		(1.4)		4.1	2.1	(0.9)
t-Bu	0.7	2.7	3.0		8.2	3.9	2.4
Ph	0.4		(1.5)		3.9	2.3)
Br	0.0	0.6	0.7	0.9	2.4	1.2	0.8

K_{eq} calculation (4 pts)

$$
\begin{aligned}
& \Delta(\Delta \mathrm{H})=8.4-5.1=3.3 \mathrm{kcal} / \mathrm{mole} \\
& \mathrm{~K}_{\mathrm{eq}}=10 \frac{-3300}{1380} \\
& \mathrm{~K}_{\mathrm{eq}}=10^{-2.4}=0.0041=1 / 240=(\text { least }) /(\mathrm{most})
\end{aligned}
$$

5. Use the following set of Fischer projections to answer each of the questions below by circling the appropriate letter(s) or letter combinations). Hint: Redraw the Fischer projections with the longest carbon chain in the vertical direction and having similar atoms in the top and bottom portion. Classify all chiral centers in the first structure as R or S absolute configuration. (30 pts)

A
(R/S, 3 pts)

b. Which are meso?
c. Which is not an isomer with the others?
d. Which pairs are enantiomers?
e. Which pairs are identical?
f. Which pairs are diastereomers?
g. Which pairs, when mixed in equal amounts will not rotate plane polarized light?

C

(A) B $A \quad B \quad C$
$\begin{array}{ccc}C & D & E \\ \text { C. } & D & E \\ \text { C. } & D & E\end{array}$
$A B$ Ad AD

(15 pts)
h. Draw any stereoisomers of 2,4-diaminohexan-3-ol as Fischer projections, which are not shown above. If there are none, indicate this. (5 pts) $\quad \mathrm{B}=\mathrm{D} \quad \mathrm{E}$

3 chiral centers $=2^{3}$ possible stereoisomer $=8$

A
i. Stenine is an antitussive (anti cough) alkaloid isolated from Stenoma moths. A recent article in Org. Lett. 2019, 21, 18-21 published a synthesis. Circle all of the chiral centers. How many stereoisomers are possible? Show work. (5 pts)

$$
\begin{aligned}
& \text { \# chiral centers }=\frac{7}{\text { \# possible stereoisomers } \quad 2^{7}=128}
\end{aligned}
$$

j. What is the degree of unsaturation?

Show work. (2 pts)

$$
\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrClFN}_{2} \mathrm{O}_{2}
$$

$2(13)+2+2=30$
$\frac{-14}{16 \div 2=8 \text { degrees }}$
6. Assume all nonhydrogen atoms have full octets except when + carbon is shown. Add in any necessary lone pairs and use proper curved arrows. Draw two additional "better" 2D resonance structures of the given structure.
Which structure(s) is(are) best and why? Draw a 3D structure for the given resonance structure. Show bonds in front of the page as wedges, bonds in back of the page as dashed lines and bonds in the page as simple lines. Show orbitals for pi bonds and lone pairs along with their electrons. Identify the hybridization, bond angles and descriptive shape for all numbered atoms in the given structure. (32 pts)

3D structure of A (13 pts)

Use the given (first) Lewis structure to answer this part. (10 pts)

Atom	Shape	Hybridization	Bond Angles	\# sigma bonds	\# pi bonds	\# lone pairs
1	linear	sp	180	1	1	2
2	linear	sp	180	2	1	0
3	trigonal planar	sp^{2}	120	3	1	0
4	trigonal planar	sp^{2}	120	3	0	1
5	tetrahedral	sp^{3}	109	4	0	0

Explain the different $\mathrm{C}-\mathrm{O}_{\mathrm{a}}$ bond energies. Use structures in your explanation. Include any necessary lone pairs, formal charge, curved arrows, etc. What are the hybridizations of the oxygen atom in A and B? (4 pts)
A

$93 \mathrm{kcal} /$ mole into an sp^{3} carbon atom, only shows a single bond between C and O .
7. Use the formula $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{Br}_{2}$ to draw examples for each type of isomerism indicated. This will require that you draw at least two structures in each box to show these differences. What is the degree of unsaturation? (26 pts)

(4 pts, each box) skeletal isomers	 positional isomers	 functional group isomers
conformational isomers	 R/S not required enantiomers	 diasteromers

Degree of unsaturation calculation.
$\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{Br}_{2} \quad 2(5)+2=12$

$$
-10
$$

$$
=2 \div 2=1 \text { degreee unsaturation (= pi bond or a ring) }
$$

8. Draw a 2D structure that includes the listed functional groups. Write the functional group name by its appearance in your 2D structure. Calculate the degree of unsaturation for the given formula. (26 pts)

9. a. Haldol is a potent orally active central nervous system tranquilizer used in the treatment of psychoses. Peak plasma levels, when taken orally, are 2-6 hours (in the aqueous blood). Cell membranes, on the other hand, are composed largely of alkane-like fatty acid chains. A decanoate ester prodrug was prepared to increase Haldol's lifetime in the body. When injected intramuscularly its anti-psychotic activity lasted about 1 month. Provide an explanation for its longer lifetime. (12 pts)

The alcohol "O-H" of Haldol makes it too water (blood) soluble and it is degraded as the blood passes through the liver by oxidizing enzymes, so it is rapidly excreted in the urine and/or feces. When the alcohol is esterified it is much less water (blood) soluble and gets stored in fatty tissue, where it is slowly released to the blood over a much longer time. Probably the ester is slowly hydrolyzed, making it become more water soluble again as the alcohol.
b. Match the compounds with their boiling points with a brief explanation. (10 pts)
boiling points: $2260^{\circ} \mathrm{C}, 141^{\circ} \mathrm{C}, 118^{\circ} \mathrm{C}, 99^{\circ} \mathrm{C}, 75^{\circ} \mathrm{C}, 36^{\circ} \mathrm{C}$
A

$\mathrm{MW}=72 \mathrm{~g} / \mathrm{mol}$

MW $=74 \mathrm{~g} / \mathrm{mol}$

MW $=72 \mathrm{~g} / \mathrm{mol}$
D
MgF_{2}
E

$\mathrm{MW}=62 \mathrm{~g} / \mathrm{mol} \quad \mathrm{MW}=72 \mathrm{~g} / \mathrm{mol}$

$\mathrm{MW}=72 \mathrm{~g} / \mathrm{mol}$
$\operatorname{MgF}_{2}\left(\mathrm{D}=2260^{\circ}\right)$ is ionic and has a super high boiling point to break down the very strong lattice structure. The carboxylic acid ($\mathrm{B}=141^{\circ}$) has hydrogen bonding and a polar $\mathrm{C}=\mathrm{O}$ bond which interact together to make the second highest boiling point. The straight chain alcohol $\left(\mathrm{A}=118^{\circ}\right)$ can get closer to the neighbor molecules than the branched alcohol $\left(\mathrm{F}=99^{\circ}\right)$, so it boils a little higher. The aldehyde $\left(\mathrm{C}=75^{\circ}\right)$ has polarity in the $\mathrm{C}=\mathrm{O}$ bond, but no hydrogen bonding, so it has a little lower boiling point than the alcohols. The alkane $\left(\mathrm{E}=36^{\circ}\right)$ only has dispersion forces, and is the lowest boiling compound in this group since they are all about the same size.
c. Which atom has the higher first ionization potential and why? (Ga or Br) (3 pts)

Br has a higher ionization potential than Ga

Gallium (\#31) and bromine (\#35) are in the same $\mathrm{n}=4$ row and shielded by the first 3 shells of electrons (28 electrons). The higher $Z_{\text {eff }}$ of bromine means that it will hold onto the valence electron much tighter and require more energy to ionize one of its electrons (has a higher ionization potential). $\left.\mathrm{IP}_{1}(\mathrm{Br})=273 \mathrm{kcal} / \mathrm{mol}\right)>\mathrm{IP}_{1}(\mathrm{Ga})=138 \mathrm{kcal} / \mathrm{mol}$
d. Which neutral atom has the larger atomic radius and why? (Se or Br) (3 pts)

		Selenium (\#34) and bromine (\#35) are in the same $\mathrm{n}=4$ row and shielded by the first 3 shells of electrons (28 electrons). The higher $Z_{\text {eff }}$ of bromine means that it will hold onto the valence electron much tighter and contract the valence electron shell more and have a smaller radius than selenium.
Se	Br	

$$
\mathrm{r}_{\mathrm{Br}}=94 \mathrm{pm}, \quad \mathrm{r}_{\mathrm{Se}}=103 \mathrm{pm} \quad\left(\mathrm{pm}=10^{-12} \mathrm{~m}\right)
$$

"Action is the foundational key to all success." - Pablo Picasso

