Chem 2010 Midterm #2 Fall, 2018 Beauchamp

Name _____

(Print your name legibly)

Problem	Points	Credit
1. Nomenclature (one structure)	30	
2. Explain relative stabilities based on logic arguments of organic chemistry	20	
 Chair conformations or Chain conformations or Stereochemistry or 2D/3D structures, hybridization 	25	
 4 Acid/base equations, draw mechanism details, estimate K_{eq}, explain answer 	24	
 S_N and E mechanisms, including stereochemical details 	40	
6. Predict products (20)	30	
7.Propose short syntheses (2)	30	
8. Carbocation rearrangement	15	
9. Free Radicals, Predict products provide mechanism	30	
Total	244	

This is a long exam. It has been designed so that no one question will make or break you. The best strategy is to work steadily, starting with those problems you understand best. Make sure you <u>show all of your work</u>. Draw in any lone pairs of electrons, formal charge and curved arrows to show electron movement in mechanism and explanation problems. If resonance is part of an answer, draw the best resonance structure, plus at least one additional resonance structure to show that resonance is present. Only write answers in the space available. Do your best to show me what you know in the time available.

Your mission in life is not merely to survive, but to thrive; and to do so with some passion, some compassion, some humor and some style. Maya Angelou

1. Provide an acceptable name for the following structure. Indicate the absolute configuration of any chiral centers shown in three dimensional form (R/S) and any E/Z stereogenic centers. (30 pts)

2. a. What is the most stable cation? Explain your reasoning, using structures, if necessary. Include curved arrows, formal charge and lone pairs. Hint: Consider the resonance of a C≡N group and a lone pair of electrons. (10 pts)

b. What is the most stable anion? Explain your reasoning, using structures, if necessary. Include lone pairs, formal charge and lone pairs. Hint: Consider the resonance of a $C \equiv N$ group and a lone pair of electrons. (10 pts)

3. a. Use Newman projections of the C3 \rightarrow C4 bond of 4-phenyl-2-methylhexane to show the lowest energy and highest energy conformations and calculate the relative energies. Show the most stable conformation first. Calculate a K_{equilibrium} between the least stable and most stable conformations. Assume R = 2 cal/(mol-K) and T = 300 K. (20 pts)

Approximate Eclipsing Energy Values (kcal/mole) Some were estimated by me.											
	Η	Me	Et	i-Pr	Ph	Br					
Н	1.0	1.4	1.5	1.6	3.0	1.7	1.6				
Me	1.4	2.5	2.7	3.0	8.5	3.3	2.8				
Et	1.5	2.7	3.3	4.0	10.0	3.8	3.1				
i-Pr	1.6	3.0	4.0	7.8	13.0	8.1	3.6				
t-Bu	3.0	8.5	10.0	13.0	23.0	13.5	9.1				
Ph	1.7	3.3	3.8	8.1	13.5	8.3	4.2				
Br	1.6	2.8	3.1	3.6	9.1	4.2	3.0				

Approximate Gauche Energy Values (kcal/mole)										
bonne	H Me Et i-Pr t-Bu Ph Br									
Н	0	0	0.1	0.2	0.5	0.2	0.1			
Me	0	0.8	0.9	1.1	2.7	1.4	1.0			
Et	0.1	0.9	1.1	1.6	3.0	1.7	1.2			
i-Pr	0.2	1.1	1.6	2.4	3.5	2.1	1.6			
t-Bu	0.5	2.7	3.0	3.5	7.2	3.9	3.3			
Ph	0.2	1.4	1.7	2.1	3.9	2.7	1.9			
Br	0.1	1.0	1.2	1.6	3.3	1.9	1.1			

- ΔH $K_{eq} = 10^{-2.3RT}$

most stable Newman Conformation

least stable Newman conformation

b. Derivatives of the antitumor steroidal saponin were recently prepared. The are highly potent and selective anticancer compounds. They inhibit Na^+/Ca^{+2} exchange leading to higher Ca^{+2} in the cytosol and mitochrondria causing cell death (apotosis) (Org. Lett. ASAP, 2014). Circle all chiral centers and any other stereogenic features in the partial structure below, and calculate the maximum number of stereoisomers possible. (5 pts)

4. The reactant acids and bases are given in two acid/base equations below. Also given with each equation are two pK_a values. Complete each acid/base equation including any formal charge, lone pairs and curved arrows to show how the reactants react. Use the pK_a values to calculate a K_{eq} for each reaction. Provide a very brief explanation for which side is favored. Assume all nonhydrogen atoms have full octets. (24 pts)

5. Use 4S-bromo-5R-deuteriooctane to provide a simple, arrow-pushing mechanism for each of the following reaction conditions (show curved arrows, lone pairs & formal charge). Fill in the necessary details to clearly indicate any stereochemical features and/or conformational requirements. If reactants are not drawn in the proper orientation to show how the reaction must proceed, then redraw them in a more informative way that shows this. **Do not** consider carbocation rearrangement possibilities. (40 pts)

a. Draw a 2D structure and then a 3D structure of the reacting molecule. A 3D structure will be provided for the cost of the points of this part. (3 pts)

2D structure

3D structure of (4S,5R)-5-deuterio-4-bromooctane

b. Show a mechanism for each C_{β} position and simply draw all other possible E reaction products (what kind?). Indicate if E, Z or neither. You can abbreviate common branch names if they are not part of your mechanism There may or may not be fewer products than there are numbers. (10 pts)

c. Show the S_N reaction (what kind?), indicate the absolute configuration(s) of the C_{α} center in the product. (6 pts)

5

d. Show all steps of the S_N reaction (what kind?). You can use one intermediate to show all possible S_N possibilities. Indicate the absolute configuration(s) of the C_{α} center in the product. You can abbreviate common branch names if they are not part of your mechanism (9 pts)

e. Show a mechanism for two E products and simply draw all other possible E reaction products (you can use the same intermediate for your two mechanisms). Indicate if E, Z or neither. There may or may not be fewer products than numbers. (12 pts)

3

2

5

4

other possible E products

1

6. Write in the <u>major product</u> and type of reaction for each set of conditions below. Arrow pushing is not required (1.5 each, 30 pts)

7. Propose a reasonable synthetic sequence to make the given target molecules using the given starting materials. Show each step with an arrow and the necessary reagents to accomplish the indicated transformation. If you make a molecule in one part you can use it in any other part. (30 pts)

8. Propose a complete arrow-pushing mechanism for the following transformation. (15 pts) c.

9. a. How many different types of sp^3 hydrogen atoms are present in 2S-bromopentane? Show all possible products when 2S-bromopentane is brominated with Br₂/hv? Use Fischer projections. Put a dot by any chiral centers. If stereoisomers form, specify what type of isomerism is present (enantiomers, diastereomers, meso compounds, achiral, etc.). Indicate the approximate relative amounts of each product formed if the relative rates of reaction of a bromine atom with an sp^3 C-H bond are: primary = 1, secondary = 80, tertiary = 1600 and bromine substituted carbon = 2000. (21 pts)

b. Provide a complete arrow pushing mechanism to explain formation of the major product from the above reaction (show proper curved arrow conventions, lone pairs as two dots and single electrons as one dot). Clearly label each distinct part of the reaction mechanism. Calculate an overall ΔH for each step of your mechanism using the given bond energies. (15 pts)

	-
Br—Br	46
H—Br	88
СН ₃ -Н	105
1º C-H	98
2º C-H	95
3º C-H	92
$C_{\alpha}Br$ -H	88
CH ₃ -Br	70
1º C-Br	68
2º C-Br	67
3º C-Br	66
$C_{\alpha}Br$ -Br	64

It is in your moments of decision that your destiny is shaped.

	GROUP		D				TA	DI	C /		тυ	СС	:I C	. KA C		ГС		
	<u>1 IA</u>				UL			DL	, 	JF	ΙП				= IN	J		<u>18 MIIA</u>
e	1 1.008														2 4.0026			
ğ 1	H		GROUP NUMBERS GROUP NUMBERS											He				
A	HYDROGEN 2 11/A 12 MA 15 VA 16 VIA									17 VIIA	HELINA							
	3 6.94	4 9.0122											9 18.998	10 20.180				
2	Li	Be			ATOMIC	NUMBER	5 10.811	- RELATIVI	E ATOMIC M/	ASS (1)			В	С	N	0	F	Ne
	LITHIUM	BERYLLIUM				SYMBOL —	-B						BORON	CARBON	NITROGEN	OXYGEN	FLUCRINE	NEON
ĺ	11 22.990	12 24.305					BORON -	- ELEMENT	INAME				13 26.982	14 28.085	15 30.874	16 32.06	17 35.45	18 39.945
3	Na	Μσ											Al	Si	Р	S		Ar
	SOORIM	MAGNESIUM	a 1005	A 5/8	s viz		7 Mills	8	– VIIB –	18	11 🖹	12 IIB	ALUMINIUM	SILICON	PHOSPHORUS	SJLPHUR	CHLORINE	ANIBLIN
	19 39.068	20 40.078	21 44.956	22 47.887	23 50.942	24 51.896	25 54.838	26 55.845	27 58.933	28 58.693	29 63.546	30 65.38	31 69.723	32 72.64	33 74.922	34 78.971	35 79.904	36 83.798
4	к	Ca	Sc	Ті	v	Cr	Mn	Fe	Co	Ni	Cn	Zn	Ga	Ge	As	Se	Br	Kr
	POTASSIUM	CALCUM	SCANDIUM	TITANIUM	VANADUM	CHRONUM	MANCAMERE	BON	COBAIT	NCKEI	COPPER	ZINC	6AUUM	GERMANULA	ARSENIC	SELENIUM	BROMINE	KRYPTON
	37 85,468	38 87.62	39 88.906	40 81.224	41 92,906	42 85.95	43 (98)	44 101.07	45 102.91	46 106.42	47 107.87	48 112.41	49 114.82	50 118.71	51 121.76	52 127.60	53 126.90	54 191.28
5	Rh	Sr	v	Zr	Nh	Mo	11% 11%	Rn	Rh	РА	Ασ	Ca	In	Sn	Sh	Та	Т	Ye
-		671	L.			1410	100	IN UL			ng 	Carponium	A.L.I	1311	LOU .	TEALURAINA		
	55 132.91	56 137 33	67 71	72 178.49	73 180.95	74 183 84	75 188 21	76 190 23	77 192 22	78 195.08	79 198.97	80 200 59	81 204 38	92 207 2	83 208 98	84 (209)	85 (210)	86 (222)
6	Ce	Do	5/-/1 La In	TT.F	То	11	Da		Tw	De	An	Ug	T	Dh	Di	Do.	A +	Dn
•		Da	La-Lu Lenthanide		13	**	RC		11	F t	Au	ng		F U	DI	FU	AL	
	87 (273)	SR (226)	00.100	104 (267)	105 (268)	106 /270	107 /272		106 (276)	110 (280)	111 /2900	112 (295)	113 (285)	114 (287)	114 (200)	116 (201)	117 (200	118 (204)
7	₩, (220) 12	Do	89-103	104 (201)	103 12007	(Sup	107 (2)27	100 (277)	107 (270)	10/2017	10)74	(70cc)	N015	ענט אָ זאו:	11.5 (200)	li ca	H No	(A) T4
(FT	Ka	AC-LF	IGUL	un and and and and and and and and and an	DB.		10 KS	10205	LLS	TCR		NIII		TATES	ШĄУ	ШØ	Uy
	FRANCIUM		HAMBOR	RUTHERFORDLIN	DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	METNERILM	DAVENTIATIUM	ROBHTGENUN	COPERNICIUM	нномши	ALERCHUM	MOSCOWIUM		TENNESSINE	OGANESSCH
Copyright © 2017 E											7 Eni Generalić							
				57 138.91	58 140.12	59 140.91	60 144.24	61 (145)	62 150.36	63 151.96	64 157.25	65 158.93	66 162.50	67 164.93	68 167.26	69 188.93	70 173.05	71 174.97
				La	Ce	Pr	Nd	12m	Sm	Eu	Gd	ТЪ	Dv	Но	Er	Tm	Yb	Lu
				LANTHANUM	CERIUM	PRAGEODYMIUM	NEODYMUM	PROMETHUM	SAMARUUN	EUROPIUM	GADOLINUM	TERRIUM	DYSPROSIUM	HOLMIUM	ERBILIM	THULUM	YTERBILM	LUTETIUM

89 (227) 90 232.04 91 231.04 92 238.03 93 (237) 94 (244) 95 (243) 96 (247) 97 (247) 98 (251) 99 (252) 100 (257) 101 (258) 102 (259) 103 (282)

 \mathbb{C} m

CURIUM

Bk

Cĩ

BERRELLIM CALIFORNUM EINSTEINUM

 $\mathbb{R}^{\mathbb{S}}$

Midi

MENCELEVIUM

<u>]Mm</u>

FERMIUM

No

ACTINIDE

Ac

ACTINUUM

Th

THORE

Pa

PROTACTIVILIM

U

URANIUM

Np

NEPTLINUM

1Pm

PLUTONIUM

Ann

AMERICIUM

(1) Atomic weights of the elements 2013, Pare Appl. Chem., 88, 265-291 (2016)

10

<u>111</u>

NOBELIUM LAWRENCIUM