Chem 201 Midterm Fall, 2018

Beauchamp

Name <u>Key</u>

Problems	Points	Credit
1. Functional Group Nomenclature (1 large structure)	30	
2. Resonance, Formal Charge, Arrows	18	
3. Cyclohexane Conformations, Newman Projections	30	
4. Newman Projections, Conformational Energies	25	
5. Stereochemical Analysis	30	
6. 3D Structure, Resonance, Hybridization, Angles, Shapes (1)	36	
7. 2D Lewis Structures (1, large)	25	
8. Functional Groups, Names or Types of Isomers or Special Types of Carbons and Substituents, Degrees of Unsaturation	28	
9. Forces of Interaction and Physical Properties	19	
10. Properties of Atoms, (ionization potential, Z _{eff} , radii, electronegativity), Logic Arguments of Organic Chemistry (inductive, resonance, steric)	26	
Total	267	

This is a long exam. It has been designed so that no one question will make or break you. The best strategy is to work steadily, starting with those problems you understand best. Make sure you show all of your work. Draw in any lone pairs of electrons, formal charge and curved arrows to show electron movement where appropriate. Partial credit is given for any partially correct responses. Do your best to show me what you know in the time available.

The wise does at once what the fool does at last. Baltasar Gracian

1. Provide an acceptable name for the following molecule. Only specify R and S where shown as 3D. (30 pts)

(4E,6R,8R,9S) 3-(2-methylbutoxy)-4-(2-methyl-3-benzyl-4-nitrosooctyl)-5-phenyl-6-hydroxy-8-amino-9-mercapto-10-ethyl-12-bromododec-4-enyl 2-amido-3-nitro-6,11-dioxo-7-(4-chlorocarbonyl-7-propylthiocyclonona-4E,7Z-dienyl)-8-cyano-9-(3-methoxycarbonylcyclopentyl)undec-7Z-en-4-ynoate

2. Indicate all formal charges present in the following structures. Assume all electrons are shown as lines or dots. If other reasonable resonance structures are possible, draw the **best** other resonance structure using the proper arrow conventions. Indicate which resonance structure is better or if they are equivalent with a brief reason why. (18 pts)

3. Draw all possible chair conformations of trans-1- methoxy-3-isopropylcyclohexane. The axial energy of a methoxy group is 0.6 kcal/mole and the axial energy of isopropyl is 2.1 kcal/mole. The gauche energy of methoxy/isopropyl is 0.9 kcal/mole. Make the left most ring carbon C_1 and number towards the front. Show <u>all</u> axial and equatorial groups in the first chair. Which conformation is more stable? Provide a reason for your answer. Draw a Newman projection of the <u>least</u> stable conformation using the $C_1 \rightarrow C_6$ and $C_3 \rightarrow C_4$ bonds to sight along. Point out any gauche interactions of the substituents shown in your Newman projection. Sketch an energy diagram that shows how the energy changes (lower to higher) with the conformational changes and estimate the ratio of the two conformations at equilibrium. Show your work.

b. Newman projection $(C_1 \rightarrow C_6 \text{ and } C_3 \rightarrow C_4) - \underline{\text{least}}$ stable, point out any gauche interactions with the substituent(s). (5 pts)

c. Energy diagram and relative percents ($K_{eq} = ?$) (5 pts)

d. Calculate an approximate ΔH difference between the two conformations. Use that value to estimate a K_{eq}. (Assume R = 2 cal/mol-K and T = 300 K.) Use energy values provided in the box. Show your work. (5 pts)

The energy table is not shown here.

$$\Delta(\Delta H) = 3.3 - 7.1 = -3.8 \text{ kcal/mole}$$
$$K = 10^{\frac{-(-3800)}{1380}} = 10^{2.75} = 570 / 1$$

4. Use a Newman projection of the $C3 \rightarrow C4$ bond of 2,2,3-trimethyl-4-phenylhexane to show the most stable conformation first. Rotate through all of the eclipsed and staggered conformations. Using the energy values provided in the tables below, calculate the relative energies of the different conformations. Plot the changes in energy in the graph diagram provided. Calculate a ratio of least stable to most stable based on ΔH values. Hint: Draw a 2D structure first and "bold" the bond viewed in your Newman projection, then decide your line of sight. (25 pts)

		Approximate Eclipsing Energy Values (kcal/mole) Some were estimated by me.									Approx Some v	Approximate Gauche Energy Some were estimated by me.					Values (kcal/mole)		
	= Ph		Н	Me	Et	i-Pr	t-Bu	Ph	Br			Η	Me	Et	i-Pr	t-Bu	Ph	E	
t-Bu = 2 3 4 5 6 = Et	н	1.0	1.4	1.5	1.6	3.5	1.7	1.6		Н	0	0	0.1	0.2	0.5	0.2	0		
	$3 \rightarrow 5 = Et$	Me	1.4	2.5	2.7	3.0	8.5	3.3	2.8	$\Delta G \approx \Delta H$ $\frac{-\Delta H}{K_{eq} = 10 \ 2.3 \text{RT}}$	Me	0	0.8	0.9	1.1	2.7	1.4	1.	
	2 4 6	Et	1.5	2.7	3.3	4.5	10.0	3.8	3.1		Et	0.1	0.9	1.1	1.5	2.9	1.7	1.	
	Me =	i-Pr	1.6	3.0	4.5	7.8	13.0	8.1	3.6		i-Pr	0.2	1.1	1.5	2.4	3.5	2.1	1.	
		t-Bu	3.5	8.5	10.0	13.0	23.0	13.5	9.1		t-Bu	0.5	2.7	2.9	3.5	7.2	3.9	3.	
	$C_3 \rightarrow C_4$	Ph	1.7	3.3	3.8	8.1	13.5	8.3	4.2		Ph	0.2	1.4	1.7	2.1	3.9	2.7	1.	
2,2,3-1	rimethyl-4-phenylhexane	Br	1.6	2.8	3.1	3.6	9.1	4.2	3.0		Br	0.1	1.0	1.2	1.6	3.3	1.9	1.	

-12,100 $K_{eq} = 10_{1380}$

 $K_{eq} = 10^{-8.77} = 1.7 \times 10^{-9} = 1 / 590,000,000 = (least) / (most)$

Br

0.1

1.0

1.2

1.6

3.3

1.9

1.1

5. Use the following set of Fischer projections to answer each of the questions below by circling the appropriate letter(s) or letter combination(s). Hint: Redraw the Fischer projections with the longest carbon chain in the vertical direction and having similar atoms in the top and bottom portion. Classify all chiral centers in the first structure as R or S absolute configuration. (30 pts)

h. Draw any stereoisomers of 3-chloroohexan-2,4-ol as Fischer projections, which are not shown above. If there are none, indicate this. (5 pts)

i. An ester of a bile acid was recently synthesized. Circle all of the chiral centers. How many stereoisomers are possible? Show work. (5 pts) $/_{L}^{O}$

6. Draw two additional "better" 2D resonance structures of the given structure. Assume all nonhydrogen atoms have full octets unless + is written next to carbon. Add in any necessary lone pairs and use proper curved arrows to show electron movement. Which structure(s) is(are) best and why? Draw a 3D structure for the given resonance structure. Show bonds in front of the page as wedges, bonds in back of the page as dashed lines and bonds in the page as simple lines. Show orbitals for pi bonds and lone pairs along with their electrons. Identify the hybridization, bond angles and descriptive shape for all numbered atoms in the given structure. (30 pts)

Not required, but drawn to show the similar shapes of all the atoms in different resonance structures.

Atom	Shape	Hybridization	Bond Angles	# sigma bonds	# pi bonds	# lone pairs		
1	trigonal planar	sp^2	120	2	0	2		
2	trigonal planar	sp ²	120	3	1	0		
3	trigonal planar	sp ²	120	3	1	0		
4	linear	sp	180	2	1	0		
5	linear	sp	180	2	1	1		
6	tetrahedral	sp ³	109	4	0	0		

Use the given (first) Lewis structure to answer this part. (12 pts)

Explain the different C-F bond energies. Use structures in your explanation. Include any necessary lone pairs, formal charge, curved arrows, etc. What is the hybridization of the fluorine atom in A and B? (4 pts)

108 kcal/mole

108 kcal/mole normal single sp³ C-F bond, no resonance possible into an sp^3 carbon atom.

120 kcal/mole resonance shows some double bond character between C and F (sp^2)

120 kcal/mole

7. Draw an acceptable Lewis structure (2D) for the following structure. Show<u>all</u> single, double and triple bonds with one, two or three lines. Include all lone pairs of electrons as two dots. Include formal charge, if present at the atom where present. (25 pts)

8. Match each letter with its common name. Some letters may be used twice. (25 pts)

Use the given molecular formula to calculate the degree of unsaturation. Show work. $C_{21}H_{24}BrClFN_3O_5$, (3 pts)

 $C_{21}H_{24}BrClFN_{3}O_{5}$ 2(21) + 2 + 3 = 47 single bonding positions -24 + 1 + 1 + 1 = 27 single bonding groupsmissing groups = 20 ÷ 2 = 10 degrees of unsaturation

9. a. The active site of an important liver enzyme has just been discovered. Several key regions are shown in the enzyme active site, just below. As an employee of Bronco Pharmaceutical, you are trying to design an inhibitor molecule that will strongly bind to the key regions of the active site so that the normal substrate cannot get in and react. Four possible inhibitors are shown below. Pick the molecule you think will block the enzyme cavity the best and draw it in the active site. Dashes represent "behind" the page, heavy lines indicate in "front" of the page and simple lines are "in" the page. R represents a nonpolar group. Give a very brief explanation for why your choice will work best. (7 pts)

b. Propyl amine, ethylmethylamine and trimethyl amine have boiling points of 7°C, 35°C and 51°C. Match each temperature with the correct compound and provide an explanation for you answer. (7 pts)

The first structure has 2 polar hydrogen atoms (bonded to the nitrogen) that can hydrogen bond, so has stronger attractions with its neighbors (higher boiling point), the second structure has 1 polar hydrogen atom, so has weaker attractions than the first but stronger than the third which has zero polar hydrogen atoms, and the lowest boiling point.

c. 1,3-dichlorobenene and 1,4-dichlorobenzene have melting points of -22 and 53°C, in no particular order. Match each temperature with the correct compound and provide an explanation for you answer. (5 pts)

The linear symmetry (more symmetrical shape) of the 1,4-dichloro isomer allows closer packing in the lattice structure. Since the molecules are closer they have stronger interactions that have to be overcome before the lattice breaks down at the melting point. That requires more energy, which we see as a higher melting point.

 $T_{mp} = -22^{\circ}C$

10. Logic arguments of organic and biochemistry

a. The first molecule in each row is a reference point. Explain if the indicated substitution will be stabilizing, destabilizing or have no effect relative to the reference structure. Provide an explanation for your answer. (10 pts)

All of the structures are very electron deficient carbocations that would like to have more electron density. "R" groups are inductively electron donating relative to hydrogen atoms, so structure A should help stabilize the carbocation by shifting its sigma electron towards the electron deficient carbon. The problem with the "R" groups in B is that the fluorines are all pulling electrons AWAY from the electron deficient carbocation and that would be very destabilizing. Structure A more stable than the reference compound and structure B is less stable than the reference carbocation.

All of the structures have too much electron density. In structure C the R groups are pushing even more electron density towards the negative charge which is destabilizing. In structure D the fluorines are all trying to pull more electron density towards themselves, away from the negative charge, which statilizes the excess charge on the oxygen.

b. Which atom has the higher first ionization potential and why? (F or S) (16 pts, 4 pts each)

F is farther to the right (higher Z_{eff}) and higher in a column (closer to the nucleus). Both of those predict a stronger attraction for electrons, so ionization potentials are F > S. IP₁ (F) = 402 kcal/mole and IP₁ (S) = 239 kcal/mole

c. Which neutral atom has the larger atomic radius and why? (S or Cl)

Sulfur and chlorine are in the same row. S has a Z_{eff} of +6 and Cl has a Z_{eff} of +7, so Cl will hold on to its electrons tighter than S. This should contract the electron cloud making the radius of sulfur ($r_s = 88$ pm) larger than chlorine ($r_{Cl} = 79$ pm).

d. Which anion has the larger radius and why? $(Br^{-1} \text{ or } Se^{-2})$

Both Br^{-1} and Se^{-2} are in the same row and have a full n=3 shell (full octets). Selenium has Z_{eff} of +6 and bromine has a Z_{eff} of +7, so Br will hold on to its electrons tighter than Se so bromine is smaller than selenide. Also there is an excess of 2 electrons instead of 1 electron. The radius of selenide ($r_{Se-2} = 184 \text{ pm}$) is larger than bromide ($r_{Br} = 182 \text{ pm}$)

e. Which cation has the larger radius and why? $(Na^+ \text{ or } Mg^{+2})$

Both Na⁺ and Mg⁺² have lost all of their n=3 valence electrons and have full n=1 and 2 shells (core electrons = $1s^2$, $2s^2$, $2p^6$). Na has Z_{eff} of +1 and Mg has a Z_{eff} of +2, so Mg will hold on to its electrons tighter than Na. The radius of Mg⁺³ ($r_{Mg+2} = 86$ pm) should be smaller than Na⁺ ($r_{Na+} = 116$ pm).

You can't build a reputation on what you are going to do. Henry Ford

	GROUP		DE				TA	DI	C (тυ	C C		- RA C		ге		
	1 🖪	,			UL		IA	DL		JL	ΙП					J	í	18 MIA
8,	1 1.008																	2 4.0026
B 1	H			_	GROUP N	UMBERS		GROUE	NUMBERS									He
<u>p</u> _	HTTCHEDGEN	2 11/4		1	UPAC RECON (19	IMENDATION 85)	к с	HEMICALAI	BSTRACT SEI (1986)	WICE			13 1116	14 NA	<u>15 %</u>	<u>16 VIA</u>	17 VIA	
_	3 6.94	4 9.0122		3 IIA ATOMIC NIDURSE 5 40 MA												19 20.180		
2	Li	Be	B C N O F											Ne				
		BERMLINN				SYMBOL —	–B						BOROM	CARBON	NIROCEN	CIRYCEN	FLUCRINE	NEON
	11 22,990	12 24.305				I	BORON	ELEMENT	INAME				13 28,982	14 28.085	15 30.974	16 32.06	17 35.45	18 30.948
3	Na	Mg							9.50MT28				Al	Si	P	S	CI	Ar
	SCOUM	ASMONECIUM	3 1118	<u>4 193</u>	<u>5 VB</u>	<u>6 VIB</u>	<u>7 VIB</u>	8	9	10	<u>u n</u>	<u>12 IIB</u>	ALUMINUM	SILICON	рновенских	SULPHUR	CHLORINE	ARGON
	19 39.098	20 40.078	21 44.958	21 47,967	23 50.942	24 51.998	25 54.938	26 55,845	27 58.933	28 58.693	29 63.546	30 65.38	31 69.723	32 72.64	33 74,922	34 78.971	35 79.904	36 83.798
- 4	K	Ca	Sc	Ti	V	Сг	Mn	Fe	Co	Ni	Сц	Zn	Ga	Ge	As	Se	Br	Kr
	PORASSIUM	CONCOUNT	SCANDIUM	TTAULA	VENADULE	СНЮШЫ	MANGANESE	HON	COBRLT	NICKEL	COPPER	ZINC	GALLING	GERMANULH	ARGENEC	SELENIUM	BROMINE	INTERN
	37 85.488	38 87.62	39 86.906	40 91.224	41 82.806	42 85.95	43 (88)	44 101.07	45 102.91	46 108.42	47 107.87	48 112.41	49 114.82	59 118.71	51 121.76	52 127.60	53 126.90	54 131.29
5	Rb	Sr	Y	Zr	Nb	Mo	'11e	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
	RUBICIUM	STRONTIUM	YTTRIJN	ZIRCONUM	NICEIUM	MOLYEDENUM	TECHNETIUN	RUTHENIUM	RHODIUM	PALLADIJM	alver	CADMUM	NOUN	ТІМ	ANTIMONY	TELLIRIUM	KORNE	XENON
	55 132.91	56 137.33	57-71	72 178.49	73 160.65	74 183.84	75 186.21	76 190.23	77 182.22	78 195.08	79 198.97	80 200.59	81 204.38	82 207.2	83 208.68	84 (209)	85 (210)	86 (222)
6	Cs	Ba	La-Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	CRESIUM	BARIUM	Lanthanide	HAPINUM	TANTALIJI	TUNGSTEN	RHENLM	COMMUNE	PIDLM	PLATINUM	6010	MERCURY	THALLUM	LEND	BESMUTH	FOLONIUM	ASTATINE	RADOR
	87 (223)	88 (226)	89-103	164 (267)	165 (266)	186 (271)	107 (272)	146 (277)	109 (276)	119 (281)	111 (280)	112 (285)	113 (286)	114 (287)	115 (289)	116 (291)	117 (294)	118 (294)
7	Fr	Ra	Ac-Lr	RAP	Db	Se	Bh	Ha	MA	Ds	Reg	Cn	\mathbb{N}	171	Me	ILN	163	Og
	FRANCIUM	RADIUM	Actinide	RUTHERFORMULA	DUBNIUM	SEABORGIUN	BOHRIUM	HASSIUM	METNERIUM	DARABITADTIUM	RIBATORNUM	COPERINGUM	NHONUM	FLEROVIUM	MOSCOVIUM	LIVERSKARUN	TENNEBSWE	OGWEESCH
																	Capyright © 201	7 Eri Generalić
				LANTHAN		(m	(7)	(c)	[m	(ca	(A	(C	(cc	(a	[6 8 1 1 1 1	(a		(m
				5/134.91	50 140.12	39/140.91	00 144.24	(145) (145)	02 150.36	NO 161.96	94 167.20	65 156.93	NB 162.50	0/ 154.93	06 157.25	07 158.53	79 173.05	71 174,97
				La	Ce	FT	Na	IMM	Sm	Eu	Gđ	TD	Dy	Но	Er	Tm	YD	Lū
					CBANA	PRIMECOVINUE	NECCIMIUM	THEORETHING	ENVIRIAN	EUROPUM		TERBINA	DARLEORINE	HOUNIAN	ERBILM	THULWAR	YTTEREBULAN	
	****5	eriodni.com		ACTINIDE	90 232 M	91 231 PM	92 238/13	93 /277	94 1244	95 (20)	96 000	97 (202)	98 (254)	99 253	100 257	101 (259)	182 (250)	103 (282)
					Th	De	TT	15 par)	10				(164) (769)	(<u>אנא</u> ר (1) היים	104-333	1.		140 (2022) 17 co
										AND	Gui	75101	G	1 MAN	16100	TOT RAL	100	<u>1617</u>

THORUS PROTECTIONS URANUS REPORTING PLATONICAL AMERICAN CURING BETWEEN CALFORNIA EMSTERIAS FERMING RECEDUM ACCELLAR LAWERCOM

(1) Atomic weights of the clements 2013, Pure Appl. Chem., 98, 265-291 (2016)

ACTINUM