On a separate piece of paper, provide acceptable names for the following structures. After you have named your structures, turn it around and redraw each structure by the name you gave it (for more practice). Clearly number the longest high priority chain in your drawing. Hints are provided just below the structures and answers are provided just below the hints. Use a separate piece of paper to cover those up unless you absolutely need them. There are probably some mistakes. Please let me know when you find them. Thanks. My usual 2 page overview of nomenclature is provided at the end of these problems (repeat found in other documents.)

1. Problems - alkanes
alkanes suffix = -ane prefix = branch names end in "-yl"

b.

4-cycloheptyl-8-(4,4-dimethylcyclohexyl)-1-(2-methyl-3-ethylcyclopentyl)decane

hint
2. Problems - alkenes
alkenes suffix = -ene prefix = branch names end in "-\#-enyl"
b.

hint

(2)
possible answer

older		newer
(2Z)-2-pentene	or	(2Z)-pent-2-ene
cis-2-pentene		

b.

Nomenclature Worksheet

Beauchamp
possible answer
(3Z)-4-ethyl-6-methyl-3-heptene older
or
(3Z)-4-ethyl-6-methylhept-3-ene newer
c.

hint

(2E)-4-(cyclopent-3-enyl)hex-2-ene
d.

hint
e.

hint

3. Problems - alkynes

hint

hint	possible answer
	5-(prop-2-enyl)cyclonon-1-yne

d.

Either the alkene or the alkyne could get \#1
possible answer based on the lowest possible number at the first point of difference. Since they are similar here, the alkene gets the \#1 because it is higher priority when all else is equal.

4-c(yclohex-3-enyl)hept-1-en-6-yne
e.

4. Problems - carboxylic acids

hint	Functional Groups 1. carboxylic acid 2. amine
3. nitrile	
4. alkene	

(
hint

possible answer

Functional Groups

1. carboxylic acid
2. ether
3. ketone
4. amine
5. alcohol
6. acid chloride
7. aldehyde (branch)
8. thiol
9. nitro
10. methoxy ester
11. 1^{0} amide
12. aldehyde (in longest chain)

2-ethoxy-3,12-dioxo-4-amino-5-hydroxy-6-chlorocarbonyl-7-formyl-8-mercapto-9-nitro-10-methoxycarbonyl-11-amidodocec-6Z-enoic acid

5. Problems -anhydrides

suffix = -oic anhydride

b.

hint

6. Problems - esters carboxylic esters (we just say "ester") if lower priority group name as prefix = -\#-alkoxycarbonyl-

7. Problems - acid chlorides

a.	acid chlorides	ix = chlorocarbonyl- suffix =-oyl chloride
	Functional Groups 1. acid chloride 2. bromo 3. alkene 4. ketone 5. aldehyde	possible answer 2-bromo-4,6-dioxohex-2Z-enoyl chloride
hint	Functional Groups 1. acid chloride 2. nitro 3. ether 4. alkyne 5. ketone	possible answer 2-nitro-3-propoxy-6-oxohept-4-ynoyl chloride

8. Problems - amides

9. Problems - nitriles
a. nitriles prefix = \#-cyano- suffix = -nitrile (don't drop the final "e" before nitrile)
hint

Functional Groups

1. nitrile
2. alcohol
3. nitro
4. alkene
possible answer

2-hydroxy-4-nitropent-4-enenitrile

Functional Groups

1. nitrile

2. thiol
3. nitro

4. amine
5-aldehyde

possible answer
Functional Groups

1. nitrile
2. alkyne

3. ketone
4. alkene

l
9. Problems - aldehydes

	aldehydes	prefix $=$ \#-oxo- \quad suffix $=$-al
	Functional Groups 1. aldehyde 2. ether 3. alcohol 4. alkene	possible answer 2-methoxy-6-hydroxyhept-2Z-enal
	Functional Groups 1. aldehyde 2. thiol 3. alkyne 4. ketone	possible answer 3-mercapto-6-oxohept-4-ynal

10. Problems - ketones

	Functional Groups 1. ketone 2. benzyl 3. phenyl 4. alkene	possible answer 3-benzyl-7-phenyloct-3E-en-2-one
	Functional Groups 1. ketone 2. alkene 3. alkyne	possible answer oct-3E-en-5-yn-2-one

11. Problems - alcohols

suffix=\#-ol

	Functional Groups 1. alcohol 2. alkyne 3. alkene	possible answer 6-ethylhept-6-en-4-yn-3-ol

12. Problems - thiols

a. prefix = \#-mercapto- suffix = \#-thiol (don't drop the final "e" before thiol)
hint
(
b.

$\text { hint } \searrow_{S}$		
	Functional Groups 1. thiol 2. sulfide 3. aromatic	possible answer 3-phenyl-3-methylthiopropane-1-thiol

13. Problems - amines
a. amines prefix = \#-amino- suffix =-\#-amine

Beauchamp

b.

b.

hint
Functional Groups

1. ether
2. cycloalkene

possible answer

15. Problems - miscellaneous low priority groups

This problem has most of the functional groups you are responsible for in a first year course in organic chemistry. The problem, as difficult as it looks, is doable if you are systematic in your approach. A possible strategy to follow is listed just below.

Some Points to Consider

1. What is the highest priority group present?
2. What is the longest chain with that group?
3. Number that chain (or ring) so that the high priority group gets the lowest number (often this is a 1 and not written).
4. Identify branches and lower priority functionality with their numbers (usually named as prefixes, except "-ene" and "-yne").
5. Combine everything into one name with proper use of hyphens (between numbers and letters) and commas (between numbers and numbers).

A possible solution (not alphabetized).

6-hydroxy-5-methylhexa-2E,4Z-dienyl (2S,6S,8Z,10R,11R)-2-carbamoyl-5-formyl-5-(3-heptyl-5,5-dimethylcyclopent-2-enyl)-6-mercapto-7,12-dioxo-8-nitro-9-butoxy-10-cyano-11-aminododec-8-en-3-ynoate

alkane structures		
		Two equivalent chains. Number from left so lower initial number.
		Use the top path due to a greater number of branches. Number from left so lower initial number.
		Use the top path due to a greater number of branches. Number from right so lower initial number.
		Use the top path due to a greater number of branches. Number from right so lower initial number at first point of difference.
		thylpropyl)decane Use the side path due to a similar number of branches, but lower initial number. Number from right because of the lower initial number at first point of difference.

What are the common names of the branches at each number?

Common names of the branches.

1. propyl (or n-propyl)
2. isopropyl
3. butyl (or n-butyl)
4. isobutyl
5. t-butly
6. sec-butyl
7. vinyl
8. allyl
9. propargyl
10. phenyl
11. benzyl

Identify each carbon atom as primary, secondary, tertiary or quaternary.

primary carbon $=1^{\mathrm{o}}=1,6,7,8,9$
sedondary carbon $=2^{\mathrm{o}}=3,4$
tertiary carbon $=3^{\mathrm{o}}=5$
quaternary carbon $=4^{\mathrm{o}}=2$

same answers for either structure A or B

Identify each carbon atom as methyl, methylene or methine.

methyl $=1,6,8$
methylene $=4,7,9$
methine $=3$
none of the above $=2,5$
answers for structure B

Provide an acceptable structure for each of the following names.
a. 2,4-dimethylhexane
b. 1,3,5,5-tetramethyl-1-cycloheptene
c. trans-5-hepten-1-yne or 5E-hepten-1-yne
d. 5-(4-methyl-2-cyclobutenyl)-1-nonene
e. trans-3-ethyl-1-isoproplycyclopentane
f. cis-1-t-butyl-4-isobutylcyclohexane
g. trans-2-cis-4-decadien-6,8-diyne or 2E,4Z-decadien-6,8-diyne
h. 1-allyl-3-propargyl-6-vinylcyclodecane
or 1-(2-propenyl)-3-(2-propynyl)-6-ethenylcyclodecane
i. 1-hepten-6-yne
j. 3-allyl-1-sec-butyl-1-cyclopropene
or 3-(2-propenyl)-1-(1-methylpropyl)-1-cyclopropene
k. 3-propyl-1-trans-6-octadiene or

3-propyl-1E,6-octadiene
l. 7-(1,1-dimethylethyl)-4-(1-methylpropyl)-1-cycloundecyne
m. 2,9,10-trimethyl-6-butyldodecane
n. 1-(1,3-dimethylbutyl)-4-methyl-1,3,5,7-cyclooctatetraene
o. 2,9,10-trimethyl-6-butyldodecane
p. trans-(3,3-dimethylbutyl)-3-methylcyclooctane
q. 7-(1,1-dimethylethyl)-4-(1-methylpropyl)-1-cycloundecyne
r. 1-hepten-6-yne
s. 1-trans-3-cis-7-cis-cycloundecatriene or
or $\quad 1 \mathrm{E}, 3 \mathrm{Z}, 7 \mathrm{Z}$-cycloundecatriene
t. 3-benzyl-6-ethyl-7-phenyl-2Z-octene

Some aromatic structures and their common names (not required in 314 or 315).

benzoic acid

benzoic ethanoic anhydride

C.

benzaldehyde

acetophenone
or
1-phenylethanone

benzoyl chloride

benzamide

benzonitrile

t.

styrene

thiophenol

benzenesulfonic acid

acetanilide

General Strategy For Naming Simple Organic Compounds (Bare bones summary sheets)

1. Find the highest priority group. These are listed in order of priority in the table of functional groups.
2. Find the longest chain containing the highest priority group. You should know carbon chains of length $\mathrm{C}_{1}-\mathrm{C}_{12}$ (listed in the table).
3. Number the longest chain containing the highest priority group to give the highest priority group the lowest number possible in numbering the longest chain. For the first seven groups, the functional group carbon will be number 1 (if it is the highest priority group) and the " 1 " can be omitted, since it is understood that it has to be this way.
4. Usually the highest priority group is named as a suffix at the end of alkane, alk-\#-ene or alk-\#-yne. The final e is dropped if the suffix begins with a vowel and it is retained if the suffix begins with a consonant. A number will be present in front of the suffix name unless its position is unambiguously clear (i.e. carboxyl groups aldehydes, nitriles, etc. always $=1$, if highest in priority). If there is a C/C pi functional group to identify (alkene or alkyne), the number in front of its part of the name describes its position (see rule 6 below). If both a pi bond and a high priority substituent are present, then two numbers may be necessary, one for each functionality.
5. Lower priority groups are named with their prefix names and their location numbers based on the numbering of the parent chain (always true for substituents numbered 12 on the next page). The lower priority substituents should be listed in alphabetical order. Some parts of prefix names count in this regard and some don't. We will not emphasize this aspect in this course.
6. Double bonds and triple bonds are named as alk-\#-ene or alk-\#-yne, respectively. If both are present, name as alk-\#-en-\#-yne. Multiple pi bonds (or other substituents) use the prefixes di, tri, tetra, penta etc. with a number for each occurrence. In such cases, an "a" is added in front of the numerical prefix for better phonetics. (alka-\#,\#-diene or alka-\#,\#,\#-triyne, alka-\#,\#-dien-\#,\#-diyne, etc.)

The essential functional groups to know (for our course) and their prefixes and suffixes are given in the attached table. In this table the term "alkan-\#-suffix" is a generic term for any alkane with a functional group suffix, and it must be replaced with the correct parent stem name based on the number of carbons in the longest chain ($\mathrm{C}_{1}-\mathrm{C}_{12}$ for us). If there is a double bond, the name will change to "alk-\#-en-\#-suffix and if there is a triple bond, the name will change to "alk-\#-yn-\#-suffix.

