On a separate piece of paper, provide acceptable names for the following structures. Redraw each structure by your name and clearly number your longest chain in your drawing. The "strict" rule say to use prefixes in alphabetical order, but I don't try to follow that rule, nor do I enforce it.

1. alkanes

2. alkenes

3. alkynes
a.
b.

e.

c.

e.

4. carboxylic acids
a.

b.

c.

d.

5. anhydrides

6. esters
a.

b.

c.

7. acid chlorides
a.

b.

c.

d.

8. amides

9. nitriles
a.

b.

c.

d.

10. aldehydes

11. ketones

b.

c.

12. alcohols
a.

b.
c.

d.

13. thiols

14. amines
a.

b.

c.

d.

15. ethers
a.

b.

c.

16.

Points to Consider

1. What is the highest priority group present?
2. What is the longest chain with that group?
3. Number that chain (ring) so that the high priority group gets the lowest number.
4. Identify branches and other functionality with their numbers. (Usually named as prefixes.)

Possible answer.
5. Combine everything into one name with proper use of hyphens (between numbers and letters) and commas (between numbers and numbers).

(2E,4Z)-1-ethyl-6-hydroxy-5-methylhexa-2,4-dienyl (7Z)-9-amino-8-butoxy-2-cyano-4-(5,5-dimethyl-3-heptylcyclopent-2-enyl)-5-mercapto-7-nitro-6,12-dioxododec-7-en-10-ynoate

trans-1-(1-methyl-2-ethylpentyl)-4-(2-methylpropyl)cyclononane

alkynes prefix $=$ none \quad suffix $=$-yne
pent-1-yne (newer way)
1-pentyne (older way)
b.

2,2,7-trimethylnon-3-yne

5-(prop-2-enyl)cyclonon-1-yne

1-cyclohexylhept-1-en-6-yne

carboxylic acids
prefix $=$ none for our course
suffix $=$-oic acid
a.

2-hydroxy-5-methoxyheptanoic acid

(2-amino-5-cyanopentanoic acid \quad| Do not number the longest |
| :--- |
| chain into the nitrile group |
| when it is a lower priority |
| group. |

c.

4-oxohex-5-ynoic acid

anhydrides	prefix = none for our course
a.	

b.

c.

2-methyl-3-chlorocarbonylbut-2E-enoyl chloride
amides prefix = carbamoyl (or amido)
suffix $=$-amide

2-diazo-4-amino-6-nitroso-7-azido-8-nitrooctanamide

ethers	prefix $=$ alkoxy (four carbons or less)	suffix $=$ none
alklyoxy (five carbons or more)		
common nomenclature allows naming each branch as "alkyl" followed by "ether", all separate words		

b.

n -alkanes, $\mathrm{n}=$ normal (Straight chain name based on the total number of carbon atoms present.)

n-propyl

n-butyl

n-pentyl

n-hexyl

Isoalkanes, iso $=3$ carbons with branch off middle carbon. The stem name is based on the total number of carbon atoms present.

isopropyl

isobutyl

isopentyl

isohexyl

This is a unique term applied to only secondary substition on a straight 4C chain.

t-alkanes, $\mathrm{t}=$ tert = tertiary carbon, having the first pattern and at least 2 methyl groups and a side branch (1C or longer). The stem name is based on the total number of carbon atoms present.

t-butyl

t-pentyl

t-hexyl

t-heptyl

Neoalkanes have the 5 carbon pattern shown in the first structure (4° carbon in the middle, with 3 methyl groups and a side branch) using the appropriate stem name based on the total number of carbon atoms present.

neopentyl

neohexyl

neoheptyl

Other patterns with special names based on the number of attached carbon atoms (a. to carbon, b. to nitrogen).
a.

1 carbon atom
attached $=$ primary $\left(1^{0}\right)$

2 carbon atoms
attached $=$ secondary $\left(2^{\circ}\right)$

3 carbon atoms attached $=$ tertiary $\left(3^{\circ}\right)$

4 carbon atoms attached $=$ quaternary $\left(4^{0}\right)$

Other patterns with special names based on the number of attached hydrogen atoms.

Stached $=$ methyl
3 hydrogen atoms
Special groups having pi bonds.
attached $=$ methylene

Some typical alkane examples

structure A
Which carbons are primary, secondary, tertiary or quaternary in structure A, structure B ?
primary carbon $=1^{0}=$
secondary carbon $=2^{0}=$
tertiary carbon $=3^{0}=$
quaternary carbon $=4^{0}=$

1-phenyl
2-isopropyl
3-butyl
4-isobutyl
5-sec-butyl
6-propyl 7-t-butyl or 7-tert-butyl

structure A

structure B
primary carbon $=1^{0}=1,6,7,8,9$
secondary carbon $=2^{0}=3,4$
tertiary carbon $=3^{0}=5$
quaternary carbon $=4^{0}=2$
Same answers for either structure A or B.

Name \qquad
Provide an acceptable structure for each of the following names.
a. 2,4-dimethylhexane
b. 1,3,5,5-tetramethylcyclohept-1-ene
c. hept-5E-en-1-yne
d. 5-(4-methylcyclobut-2-enyl)non-1-ene
e. trans-3-ethyl-1-isoproplycyclopentane
f. cis-1-t-butyl-4-isobutylcyclohexane
g. deca-2E,4Z-dien-6,8-diyne
h. 1-allyl-3-propargyl-6-vinylcyclodecane or 1-(prop-2-enyl)-3-(prop-2-ynyl)-6ethenylcyclodecane
i. hept-1-en-6-yne
j. 3-allyl-1-sec-butylcycloprop-1-ene or 3-(prop-2-enyl)-1-(1-methylpropyl)cycloprop-1-ene
k. 3-propylocta-1,6E-diene
l. 7-(1,1-dimethylethyl)-4-(1-methylpropyl)cycloundec-1-yne
m. 2,9 ,10-trimethyl-6-butyldodecane
n. 1-(1,3-dimethylbutyl)-4-methylcycloocta-1,3,5,7-tetraene
o. 2,9,10-trimethyl-6-butyldodecane
p. trans-(3,3-dimethylbutyl)-3-methylcyclooctane
q. 7-(1,1-dimethylethyl)-4-(1-methylpropyl)cycloundec-1-yne
r. hept-1-en-6-yne
s. cycloundeca-1E,3Z,7Z-triene
t. 3-benzyl-6-ethyl-7-phenyloct-2Z-ene

Nomenclature Worksheet for lecture

Points to Consider

1. What is the highest priority group present?
2. What is the longest chain with that group?
3. Number that chain (ring) so that the high priority group gets the lowest number.
4. Identify branches and other functionality with their numbers. (Usually named as prefixes.)
5. Combine everything into one name with proper use of hyphens (between numbers and letters) and commas (between numbers and numbers).
