¹H and ¹³C NMR Material (Chem 318, 319, 422, 424) Beauchamp

(updated 9-14-10)

Nuclear Magnetic Resonance (NMR): ¹H = proton NMR and ¹³C = carbon-13 NMR

¹H-NMR

Provides information on:

- 1. The types of protons present (δ = chemical shift is given in parts per million, the usual range = 0-10 ppm, a few chemical shifts extend to 10-15 ppm).
- 2. The number of such protons (integration counts the relative numbers of hydrogen atoms as a ratio by summing the area under the peaks).
- 3. How many neighbor protons are immediately adjacent to a specific center.
 - a. splitting patterns = multiplicity = number of peaks (singlet, doublet, triplet, quartet, quintet, etc.) can indicate how many neighbor protons there are. When simple (first order) the number of peaks is one more than the number of neighbors (N+1 rule). When complicated (second order) the appearance of the peaks is hard to interpret.
 - b. J values = coupling constants (distance in Hz that peaks are separated, given in frequency units, Hz = cycles per second).

¹³C-NMR

Provides information on:

- 1. The types of carbon atoms present (chemical shift is given in parts per million, the usual range = 0-250 ppm).
- 2. The number of distinct kinds of carbon atoms present equals the number of peaks in proton decoupled spectra. All carbon peaks appear as singlets when decoupled from the protons.
- 3. Reveals how many protons are on each carbon.
 - a. DEPT experiment (Distortionless Enhancement by Polarization Transfer) is a series of four ¹³C experiments with different mixing of proton coupling to display CH, CH₂ or CH₃'s as distinct patterns. Carbons without hydrogen do not show up and are determined by comparison with a normal proton decoupled ¹³C spectrum.
 - b. Off resonance experiment (coupling between protons and carbons shows up in a multiplicity of a ¹³C peak as a singlet, doublet, triplet or quartet "= N+1 rule"). This is an old fashioned method that is seldom used anymore, but much simpler to understand.

As in other spectroscopy, detection is due to energy transitions. In NMR, the detection is observed in the relaxation of the excited state. The transitions in NMR are of very low energy (radiowaves). They are a result of two magnetic quantum states resulting from the spin of nuclear particles (protons and/or neutrons) in the presence of a magnetic field.

	ultraviolet	visible	infrared	radiowave		
$\Delta E\left(\frac{\text{kcal}}{\text{mole}}\right)$	100	40	10	0.000006		
v (frequency) (per sec. = Hz)	10 ¹⁵	10 ¹⁵	10 ¹⁴	10 ⁷ NMR	Bold units are	
$\begin{array}{c} \lambda \text{ (wave length)} & \textbf{300} \\ \text{(nm)} & \textbf{UV} \end{array}$		600 VIS	3000	20,000,000,000 (20m)	for that spectrocsopic method.	
$\overline{v} = (1/\lambda)$	30,000	17,000	3300 IB	0.0005		
			IK			
$\Delta E = energy$	v = frequer	hey $\lambda = way$	velength	\overline{v} = wavenumber		
$\Delta E = hv = hc(1/\lambda) = hc\overline{v}$ $c = (v)(\lambda) = 3.0 \text{ x } 10^8 \text{ m/sec} = 3.0 \text{ x } 10^{10} \text{ cm/sec}$						

Energy = Electromagnetic Radiation

Proton (¹H) and carbon (¹³C) "magnets"

"I" is the spin quantum number.

Number of Spin States = 2(I) + 1

In practice, I = 1/2 is the most commonly encountered spin state, which is the value for both ¹H and ¹³C, the nuclei presented in this book. Other commonly used nuclei include N-15, P-31 and F-19. These are especially useful in biochemistry and pharmaceutical chemistry.

Number of spin states = 2(1/2) + 1 = 2 spin states for both proton and carbon nuclei

 $I = 1/2 = {}^{1}H, {}^{13}C, {}^{15}N, {}^{19}F, {}^{31}P,....$ (these are all observable on a typical broadband NMR)

Spectroscopy - NMR

Some nuclei only have one spin state. We are fortunate that most of carbon is isotope ¹²C and most of oxygen is isotope ¹⁶O. Both have and even number of protons and neutrons and are magnetically invisible. This greatly simplifies our interpretation of routine ¹H and ¹³C NMR spectra.

 $I = 0 = {}^{12}C, {}^{16}O, =$ no magnetic moment (magnetically invisible)

The two magnetically degenerate energy states become split in the presence of an external magnetic field. We can stimulate energy transitions between these two energy states (ΔE) via an input of radiowaves. Most NMR instruments describe ΔE in MHz based on a proton nucleus.

The ΔE between the energy states depends on two magnets:

- a. the external field = B_0 (This is what you buy when purchasing the instrument.)
- b. the nuclear magnet = γ_i (γ_{1H} , γ_{13C} ,..),(This is the nucleus observed when a sample is placed in the instrument.)

Relative Boltzman Energy Populations (protons)

Because ΔE is very small in NMR transitions, there is not much of a difference in the populations of the two energy states.

300 MHz - a bigger magnetic field and a bigger energy difference

4

Beauchamp The NMR Radio Dial

The energy difference (ΔE) of a 300 MHz NMR instrument is in the radiowave region of the electromagnetic spectrum. Think of the other nuclei as appearing at different positions on your radio dial and γ_i as the number you tune into. You can tune in a nuclei, like you tune in a radio station.

 $\Delta E = hv = (\frac{h}{2\pi})(\gamma_i)(B_o) = (\text{constants}) x \text{ (type of nucleus) } x \text{ (external magnetic field)}$

Protons

1 ppm depends on B_o (size of external magnetic field, 1 / 1,000,000 of ΔE of ν in Hz)

	$\frac{1}{1,000,000}$ x	(300,000,000 Hz) = 300 Hz = 1 ppm	= 3000 Hz
B _o 60 MHz 100 MHz 300 MHz 600 MHz	1.0 ppm (= Hz) 60 Hz 100 Hz 300 Hz 600 Hz	The range of differences in chemical shifts (about 3000 Hz = 10 ppm) is only a small portion of the total energy to cause a proton to flip (about 300,000,000 Hz = 300 MHz) on a 300 MHz instrument.	 ΔE = 300,000,000 Hz

Most protons are detected within a 10 ppm range of the entire ΔE of excitation.

<u>**Carbon-13**</u> - $(\mu_{13C}) = 1/4 \text{ x} (\mu_{1H})$ in the same external magnetic field (the carbon magnet = 1/4 the proton magnet)

1 ppm depends on B₀ (size of external magnetic field, 1 / 1,000,000 of ΔE of v in Hz)

 $\frac{1}{1.000.000}$ x (75,000,000 Hz) = 75 Hz = 1 ppm The range of differences in chemical shifts (about 1.0 ppm (= Hz)Bo 16,500 Hz = 220 ppm) is only a small portion of the 15 MHz 15 Hz total energy to cause a carbon to flip (about 75,000,000 25 MHz 25 Hz Hz = 75 MHz) on a 75 MHz instrument. The differences 75 Hz 75 MHz among the carbons is wider than the differences 150 MHz 150 Hz among the protons in ppm (greater dispersion).

Most ¹³Cs are detected within a 220 ppm range of the entire ΔE of excitation.

10 ppm

1. Electronegativity Effects

Some typical chemical shifts for methyl groups attached to different atoms are shown below. Clearly there is some sort of electronegativity effect working.

Electrons moving in chemical bonds create their own small opposition magnetic field to the external magnetic field. The more electron density there is, the stronger is this opposition field. Any nearby electron withdrawing groups can steal some of this electron density away from sigma bonds with protons and change the net magnetic field each proton experiences, which then changes the chemical shift where a proton is excited (detected).

Sigma, σ , is a shielding constant that includes a variety of factors that change the energy of transition of nuclei. Diamagnetic shielding is most important for spherical shapes, like the proton (1s orbital), but paramagnetic shielding becomes important when electrons are in orbitals that are not spherical, like carbon-13 (2p orbitals). We will not discuss this aspect, except to point out that this weak shielding effect produces a small variable reduction in the size of the external field, B_o, and produces a net effective field, B_{net}, because of shielding by electrons. Differences in σ lead to differences in the chemical shifts of protons in H-NMR (or differences in carbon shifts in ¹³C NMR).

Because the electronegativity of silicon is less than carbon, the carbon and the protons are more electron rich, thus more shielded than in routine organic compounds. The peak for both carbon and hydrogen in TMS is far to the right of most signals and defined as "zero" parts per million.

Differences in proton chemical shifts (due to electronegativity or inductive effects)

2. π bond anisotropy = a second type of effect causes changes in local magnetic environments

Certain molecule orientations (relative to B_o) add and others cancel relative to the external magnetic field. The molecules are tumbling and changing orientations to B_o on the order of 10^8-10^{12} times per second (how fast depends on the size, shape, solvent viscosity, temperature, etc.) The net *contributing* orientations are shown below for pi systems (alkenes, aromatics and terminal alkynes).

Calculation of chemical shifts for protons at sp³ carbons

Estimation of sp³ C-H chemical shifts with multiple substituent parameters for protons within 3 C's of consideration.

 α = directly attached substituent, use these values when the hydrogen and substituent are attached to the same carbon β = once removed substituent, use these values when the hydrogen and substituent are on adjacent (vicinal) carbons γ = twice removed substituent, use these values when the hydrogen and substituent have a 1,3 substitution pattern

X = substituent	α	β	γ	Starting value and equations for CH ₃ 's
R- (alkyl)	0.0	0.0	0.0	
$R_2C=CR-$ (alkenyl)	0.8	0.2	0.1	$\delta CH_3 = 0.9 + \alpha H_3C - \alpha$
RCC- (alkynyl)	0.9	0.3	0.1	
Ar- (aromatic)	1.4	0.4	0.1	
F- (fluoro)	3.2	0.5	0.2	$\delta CH_3 = 0.9 + \Sigma(\beta + \gamma)$ $H_2C - C_2 - C_3 - C$
<u>Cl- (chloro)</u>	2.2	0.5	0.2	$-\gamma$ γ γ γ γ
Br- (bromo)	2.1	0.7	0.2	
<u>I- (iodo)</u>	2.0	0.9	0.1_	Σ is the summation symbol for all substituents considered
HO- (alcohol)	2.3	0.3	0.1	
RO- (ether)	2.1	0.3	0.1	Starting value and equation for CH-'s
epoxide	1.5	0.4	0.1	Starting value and equation for CH2 s
$R_2C=CRO-$ (alkenyl ether)	2.5	0.4	0.2	
ArO- (aromatic ether)	2.8	0.5	0.3	In a similar manner we can calculate chemical shifts
RCO ₂ - (ester, oxygen side)	2.8	0.5	0.1	for methylenes (CH_2) using the following formula
ArCO ₂ - (aromatic ester, oxygen side)	3.1	0.5	0.2	
ArSO ₃ - (aromatic sulfonate, oxygen)	2.8	0.4	0.0	$\delta CH_2 = 1.2 + \Sigma(\alpha + \beta + \gamma)$ H
H_2N - (amine nitrogen)	1.5	0.2	0.1	
RCONH- (amide nitrogen)	2.1	0.3	0.1	$\prod_{\alpha} c_{\alpha} c_{\beta} c_{\gamma}$
O_2N - (nitro)	3.2	0.8	0.1	Σ is the summation symbol for all substituents considered
HS- (thiol, sulfur)	1.3	0.4	0.1	\angle is the summation symbol for an substituents considered
RS- (sulfide, sulfur)	1.3	0.4	0.1	Starting value and equation for CH's
OHC- (aldehyde)	1.1	0.4	0.1	
RCO- (ketone)	1.2	0.3	0.0	
ArCO- (aromatic ketone)	1.7	0.3	0.1	In a similar manner we can calculate chemical shifts
HO ₂ C- (carboxylic acid)	1.1	0.3	0.1	for methines (CH) using the following formula
RO ₂ C- (ester, carbon side)	1.1	0.3	0.1	
H ₂ NOC- (amide, carbon side)	1.0	0.3	0.1	$\delta CH = 1.5 + \Sigma(\alpha + \beta + \gamma) \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $
ClOC- (acid chloride)	1.8	0.4	0.1	$ \begin{bmatrix} \alpha & C_{\beta} & C_{\gamma} \\ & 1 & 1 \end{bmatrix} $
NC- (nitrile)	1.1	0.4	0.2	
RSO- (sulfoxide)	1.6	0.5	0.3_	\sum is the summation symbol for all substituents considered
RSO ₂ - (sulfone)	1.8	0.5	0.3	

Calculations are generally close to actual chemical shifts for a single substituent, but are less reliable as the number of substituent factors goes up. Multiple substituent factors tend to overestimate an actual chemical shift.

a. methine = $1.5 + (1.4)_{\alpha} + (2.3)_{\alpha} + (0.2)_{\beta} = 5.4$ ppm actual = 5.2d. methyl = $0.9 + (0.1)_{\alpha} = 1.0$ ppm actual = 1.0

b. methylene = $1.2 + (1.5)_{\alpha} + (0.4)_{\beta} + (0.3)_{\beta} = 3.4$ ppm actual = 3.0 and 3.2

c. methyl =
$$0.9 + (1.5)_{\alpha} = 2.4$$
 ppm
actual = 2.6

actual = 1.0e. methylene = $1.2 + (0.3)_{c} = 1.5$ ppm

$$actual = 1.7$$

f. methylene = 1.2. + $(1.7)_{\alpha}$ = 2.9 ppm actual = 2.9

BeauchampSpectroscopy - NMREstimated chemical shifts for protons at alkene sp² carbons

Substituent	$\alpha_{geminal}$	α_{cis}	α_{trans}
H- Hydrogen	0.0	0.0	0.0
R-	0.5	-0.2	-0.3
Alkvl	0.0	0.2	010
C ₆ H ₅ CH ₂ -	0.7	-0.2	-0.2
Benzvl			
X-CH ₂ -	0.7	0.1	0.0
Halomethyl			
(H)/ROCH ₂ -	0.6	0.0	0.0
alkoxymethyl			
$\frac{\text{dikoxy moury r}}{(H)_2/R_2NCH_2}$	0.6	-0.1	-0.1
aminomethyl	0.0	0.1	0.1
RCOCH ₂₋	0.7	-0.1	_0.1
	0.7	-0.1	-0.1
<u>a-keto</u>	0.7	0.1	0.1
NCCH ₂ -	0.7	-0.1	-0.1
<u>α-cyano</u>			
$R_2C=CR-$	1.2	0.0	0.0
Alkenyl			
C ₆ H ₅ -	1.4	0.4	-0.1
Phenyl			
F-	1.5	-0.4	-1.0
Fluoro			
Cl-	1.1	0.2	0.1
Chloro			
Br-	1.1	0.4	0.6
Bromo			
I-	1.1	0.8	0.9
Iodo			
RO-	1.2	-1.1	-1.2
akoxy (ether)			
RCO ₂ -	2.1	-0.4	-0.6
O-ester			
$(H)_2/R_2N-$	0.8	-1.3	-1.2
N-amino			
RCONH-	2.1	-0.6	-0.7
N-amide			
O ₂ N-	1.9	1.3	0.6
Nitro			
RS-	1.1	-0.3	-0.1
Thiol			
OHC-	1.0	1.0	1.2
Aldehyde			
ROC-	1.1	0.9	0.7
Ketone			
HO ₂ C-	0.8	1.0.	03
C-acid			
RO ₂ C-	0.8	1.0	0.5
C-ester			
H ₂ NOC-	0.4	1.0	0.5
C-amide			
NC-	03	0.8	0.6
Nitrile	0.0	0.0	0.0

Example Calculation

Estimated chemical shift	<u>s for protons at arc</u>	omatic sp ² carbons	
Substituent	a ortho	α meta	α para
H-	0.0	0.0	0.0
Hydrogen			
CH ₃ -	-0.2	-0.1	-0.2
Methyl			
CICH ₂ -	0.0	0.0	0.0
<u>Cholromethyl</u>	0.6	0.1	0.1
Uplomathyl	0.0	0.1	0.1
Halomethyl HOCH ₂ -	-0.1	-0.1	-0.1
Hydroxymethyl			
$R_2C=CR$ -	0.1	0.0	-0.1
Alkenyl	0.1	0.0	011
C H-	1 /	0.4	-0.1
C ₆ 115 ⁻ Dhonyl	1.7	0.4	-0.1
Fliellyl	0.2	0.0	0.2
F-	-0.3	0.0	-0.2
Fluoro	0.0	0.0	0.1
CI-	0.0	0.0	-0.1
Chloro	0.2	0.1	
Br-	0.2	-0.1	0.0
Bromo			
l- Iodo	0.4	-0.2	0.9
HO-	-0.6	-0.1	-0.5
Hydroxy	0.0	0.1	0.5
RO-	-0.5	-0.1	-0.4
Alkoxy	0.5	0.1	0.1
RCO ₂ -	-0.3	0.0	-0.1
Ω ester	0.5	0.0	0.1
$\frac{O-ester}{(H)_{2}/R_{2}N_{2}}$	-0.8	0.2	0.7
N_amino	-0.0	-0.2	-0.7
RCONH-	0.1	-0.1	-0.3
N-amide			
$\overline{O_2N}$ -	1.0	0.3	0.4
Nitro			
RS-	-0.1	-0.1	-0.2
thiol/sulfide	0.1	0.1	0.2
	0.6	0.2	0.3
Aldehyde	0.0	0.2	0.5
ROC	0.6	0.1	0.2
Koc- Ketone	0.0	0.1	0.2
HOC	0.0	0.2	03
	0.9	0.2	0.5
C-acid	0.7	0.1	0.2
RO ₂ C-	0.7	0.1	0.2
<u>U-ester</u>		0.1	
H ₂ NOC-	0.6	0.1	0.2
<u>C-amide</u>			
NC-	0.4	0.2	0.3
Nıtrile			

Beauchamp

 $\begin{bmatrix} 8 & 1 \\ 7 & 2 \\ 3 \end{bmatrix}$ sta

4

Spectroscopy - NMR

7.32

6

5

tartin	g values for calculations:
Н	1, H4, H5, H8 = 7.67

Naphalene position	H-1	H-3	H-4	H-5	H-6	H-7	H-8
Н							
hydrogen	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CH ₃ - (R-)							
methyl (alkyl)	-0.2	-0.1	-0.1	0.0	0.0	0.0	0.0
F-							
fluoro	-0.4	-0.3	0.0	0.0	0.0	0.0	0.0
Cl-							
chloro	0.1	0.1	0.1	0.1	0.1	0.2	0.0
Br-							
bromo	0.2	0.1	-0.1	-0.1	0.1	0.1	0.1
I-							
iodo	0.1	-0.5	0.2	-0.2	-0.1	0.0	0.3
HO-							
hydroxy	-0.7	-0.3	0.0	0.0	-0.1	0.0	-0.1
RO-							
alkoxy	-0.7	-0.3	0.0	0.0	-0.1	0.0	-0.1
RCO ₂ -							
O-ester	-0.2	-0.1	0.0	0.1	0.0	0.1	0.1
(H2) / R2N-							
amino	-0.9	-0.6	-0.2	-0.1	-0.2	-0.1	-0.2
RCONH-							
N-amide	0.5	0.1	0.1	0.1	0.1	0.1	0.1
O ₂ N-							
nitro	1.0	0.8	0.2	0.2	0.3	0.2	0.3
NC-							
nitrile	0.5	0.2	0.2	0.2	0.3	0.3	0.2
OHC-							
aldehyde	0.6	0.6	0.2	0.2	0.3	0.2	0.3
RCO-							
ketone	0.8	-0.7	0.2	0.2	0.3	0.2	0.3
HO ₂ C-							
acid	1.0	0.7	0.4	0.4	0.4	0.3	0.5
RO ₂ C-							
C-ester	0.8	0.7	0.1	0.1	0.2	0.1	0.2
ClOC-							
acid chloride	1.0	0.7	0.4	0.5	0.3	0.4	0.4

Starting point chemical shifts for a few common heterocycles.

8.46

Problem

a. How many different isomers are there in C_5H_{12} ? How many different types of hydrogen atoms are there in each isomer? How many different types of carbon atoms are there in each isomer?

	isomer 1	isomer 2	isomer 3
number of distinct kinds of ¹ H			
number of distinct kinds of ¹³ C			

b. How many different isomers are there for $C_5H_{11}Br$? (Hint: Use the carbon skeletons generated in part a as a starting point.) How many different types of hydrogen atoms (and carbon atoms) are there in each isomer of $C_5H_{11}Br$? Nuclei can be nonequivalent, chemically equivalent and magnetically equivalent. There can also be several types of groups: homotopic, heterotopic, enantiotopic, diastereotopic and rototopic. The types of protons (or carbons) present will affect the appearance of the NMR spectrum, sometimes dramatically. The interpretation is sometimes straight forward, but occasionally it is very complicated. Some of the details are too complicated for us to easily evaluate, but we need to be aware of them so that we know exceptions exist for our simplistic rules (e.g. the N+1 rule that we will study later). Generally each distinct type of ¹H (and ¹³C) will have its own chemical shift (δ). Occasionally two different types of ¹H (and ¹³C) will fall on top of one another and obscure the information. This is much more common in ¹H NMR (spread over 10 ppm) than ¹³C NMR (spread over 220 ppm) because the proton range is so much smaller. As you are working out the different types of protons, do the same with the carbon atoms.

	isomer 1	isomer 2	isomer 3	isomer 4	isomer 5	isomer 6	isomer 7	isomer 8
number of distinct kinds of ¹ H								
number of distinct kinds of ¹³ C								

Problem x – How many different types of hydrogen atoms and carbon atoms are in the following structures. Classify each comparison as homotopic, heterotopic, enantiotopic or diastereotopic atoms.

Summary of Generic Proton Shifts

Proton chemical shifts of hydrogen on sp³ carbons depend on two main factors (electronegativity and pi bond anisotropy). All values listed below are only approximate and have a small plus or minus range about the listed value.

1. $\underline{sp^3 C-H}$ Electronegative atoms in the vicinity of hydrogen deshield protons and produce a larger chemical shift. If the electronegative atom is in resonance with an adjacent pi system that further withdraws electron density, and the chemical shift is increased (look at ethers vs. esters).

2. <u>sp³ C-H</u> Pi bonds in the vicinity of hydrogen also deshield protons via pi bond anisotropy and produce a larger chemical shift. The closer the sp³ C-H is to the pi bond the greater chemical shift observed. When an electronegative atom is part of the pi bond, the chemical shift further increases (look at C=C vs C=O).

3. $\underline{sp^2 C-H}$ Hydrogens at the side of a pi bond are deshielded even more than above via pi bond anisotropy. An aldehyde produces the largest effect due to the electronegative oxygen, followed by an aromatic ring, followed by alkenes and finally terminal alkynes. (sp C-H, partially shielded)

4. There are several kinds of hydrogen attached to heteroatoms. Some of these are listed below. Often these hydrogens do not follow the N+1 rule because they exchange very fast on the NMR time scale via acid/base proton exchanges and are not next to neighbor protons long enough to allow coupling to be observed. They are often observed as broad singlets (sometimes so broad they are not easily seen in a spectrum). If the exchange rate is very fast among all of the exchangeable protons on the NMR time scale, all of the exchangeable protons may appear together at a single, averaged chemical shift.

The actual chemical shift (δ) depends on solvation, hydrogen bonding, exchange, etc.

Splitting patterns of coupled protons

Spectroscopy - NMR

3. Two nearest neighbor protons (both on same carbon or one each on separate carbons)

4. Three nearest neighbor protons (on same carbon, or two on one and one on another, or one each on separate carbons)

Beauchamp	Spectro	oscopy - N	MR		21
Typical Coupling Constants (for this boo <u>Range</u>	ok, reality <u>Typical</u>	y is more complicated)	<u>Range</u>	<u>Typical</u>
H _a	0-30 Hz	12 Hz	$H_{a} C = C$	0-3 Hz (0 H	1 Hz Iz, for us)
geminal protons - can have different and split one another if they are dia	chemical shift astereotopic	S	cis / allylic coupling, notice through 4 bonds		
	Range	<u>Typical</u>		Range	<u>Typical</u>
$\begin{array}{c} H_a H_b \\C - C C$	6-8 Hz	7 Hz		0-3 Hz (0 H	1 Hz z, for us)
vicinal protons are on adjacent atoms, rotating coupling averages out to ab	when freely out 7 Hz		trans / allylic coupling, notice through 4 bonds		
0 – dihadral	Range	<u>Typical</u>		Range	Typical
$\begin{array}{c} H_{a} H_{b} \\ H_{a} H_{b} \\ H_{b} \\ H_{c} \\ H_{$	0-12 Hz	7 Hz		9-13 Hz	10 Hz
H	depends o angle, see Karplus eo	n dihedral plot of quation	sp ² vicinal coupling (different π bonds)		
	Range	<u>Typical</u>		Range	Typical
$\begin{array}{c c} H_a & H_b \\ -C - C - C - C - C - C - C - C - C - $	0-1 Hz	0 Hz	-c	1-3 Hz	2 Hz
protons rarely couple through 4 chen unless in a special, rigid shapes (i.e. V	nical bonds W coupling)		sp ³ vicinal aldehyde coupling		
	Range	<u>Typical</u>		Range	<u>Typical</u>
$C = C_{H_b}^{H_a}$	0-3 Hz	2 Hz	$ \begin{array}{c} H_{a_{1}} & H_{b} \\ C - C_{1} \\ - C_{1} & O \end{array} $	5-8 Hz	6 Hz
sp ² geminal coupling			sp ² vicinal aldehyde coupling		
	Range	<u>Typical</u>		<u>Range</u>	Typical
	5-11 Hz	10 Hz	$-C = C - H_b$	2-3 Hz	2 Hz
sp ² cis (acylic) coupling (always smaller than the trans isomer)			sp / propargylic coupling notice through 4 bonds		
	Range	<u>Typical</u>		Range	Typical
	11-19 Hz	17 Hz	$\begin{array}{c} H_{a} & H_{b} \\ -C - C \equiv C - C \end{array}$	2-3 Hz	3 Hz
sp ² trans coupling (always larger than the cis isomer)			bis-propargylic coupling notice through 5 bonds		
H _a	Range	<u>Typical</u>	ortho, meta and $ \rightarrow$ H para coupling to	Range	Typical
	4-10 Hz	7 Hz	this proton H _{ortho}	ortho 6-10 Hz meta 1-3 Hz para 0-1 Hz	9 Hz 1 Hz 0 Hz
sp^2 / sp^3 vicinal coupling			H _{nara}	$(\mathbf{J}_{\text{meta}} \& \mathbf{J}_{\text{para}} = 0$	Hz, for us)

When J values are less than 1 Hz, it is often difficult to resolve them and a peak may merely appear wider and shorter.

Beauchamp	Spectroscopy - NMR
	Multiplets when the $N + 1$ rule works.
s = singlet d = doublet t = triplet q = quartet qnt = quintet sex = sextet sep = septet	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
o = octet	1 7 21 35 35 21 7 1 \sim edge peak = 0.8%

Combinations or these are possible.

dd = doublet of doublets ddd = doublet of doublet of doublets dddd = doublet of doublet of doublet of doublets dt = doublet of triplets td = triplet of doublets

etc.

Predicted appearance of proton NMR spectrum (J values can all be different or J values can coincidently be the same = N+1 rule)

Protons A, B and C are coupled to one another, but not to protons D and E. Protons D and E are coupled to one another.

Calculated proton and carbon chemical shifts (δ) from our data are also shown in parentheses.

Problem - Predict approximate NMR's for the following compounds. Draw a sketch of your estimated NMR. Include calculations of ¹H chemical shifts, estimates of coupling constants (J values) and multiplicities (s, d, t, q, dd, etc.), as well as the number of hydrogens to be integrated at each chemical shift (by writing the appropriate number of hydrogens above the multiplet, e.g. 2H). The actual chemical shifts are written by each type of hydrogen to check your calculations.

Beauchamp Spectroscopy - NMR Examples of Functional Group Possibilities

1. One point connection to isolated spin systems.

2. Two point connection to isolated spin systems.

3. Three point connection to isolated spin systems (just a sampling).

Consider a diastereotopic CH₂ or C(CH₃)₂ <u>next to a chiral center</u> to have different chemical shifts. Calculate the δ_1 chemical shift and then subtract 0.3 ppm to estimate a value for the δ_2 chemical shift.

Use the following "typical" J values in your prediction of spectra. By keeping our values "typical" we simplify our analysis of presented spectra. Real examples can be much more complicated, with every single coupling constant different from "typical" leading to an undecipherable number of peaks that we end up calling a multiplet, because of its complexity.

 $\begin{array}{c} \mathsf{H}_{b} & \mathsf{H}_{a} \text{ and } \mathsf{H}_{b} \text{ are diastereotopic in a chiral environment. If they have different chemical shifts they will split one another with J_{geminal} = 12 Hz. \end{array}$

* = chiral center

Spectroscopy - NMR

Examples of possible sp³ spin systems (C1 through C6) that could be connected to the functional group patterns shown above. There are a LOT of possibilities when di- or tri- substituted. We will try "some" of these. For possible specific examples consider: Br, CN and Ar (in any combinations). (Remember, in our course $J_{vicinal} = 7$ Hz and $J_{geminal} = 12$ Hz when diastereotopic)

Aromatic sp² H & C example patterns

1. Full coupling = larger J values, (versus off resonance decoupling = partially proton decoupled = smaller J values, not common anymore.)

Full one bond Coupling (¹J_{CH}) is large (140-250 Hz), gives multiplets similar to H NMR's N+1 rule

Each of these peaks can be further split by protons 2-3 bonds away (J = 7 Hz). We won't consider that complication factor here.

2. <u>Off Resonance Coupling (reduced one bond coupling by partial irradiation of protons, smaller ${}^{1}J_{CH} = 5-10 \text{ Hz}$)</u> (used to be common and simple to interpret from the N+1 rule, but not used much now, DEPT is used instead)

3. Fully Proton Decoupled Carbon Spectrum only have singlets for each carbon (the usual way of running a carbon 13 NMR).

All carbons above would appear as singlets in a fully proton decoupled ¹³C spectrum. Strong irradiation of the proton region can be thought of as rapid interchange of population states so each carbon sees an average of up/down proton spins with no net splitting (coupling). Simplifies spectrum ,but lose C-H information.

Beauchamp

DEPT = distortionless enhanced by polarization transfer: This is a more recent multiple pulse experiment. It is easier to read and interpret than off resonance ¹³C. However, it is much more difficult to understand the theory behind the DEPT experiment (and we won't try). The data can be presented in unprocessed (shown below) or processed form (not shown). DEPT is equivalent to running multiple carbon-13 NMR's and it takes more time.

A full spectrum is needed to determine all distinct types of carbon

Variation 2 of DEPT: All CH₃'s and CH's appear as singlet up peaks and CH₂'s are singlet down peaks. Again, C's without hydrogens do not appear.

Variation 3 of DEPT: Only CH's show as singlet up peaks. No other C's appear in this spectrum.

A processed DEPT separates out each type of carbon and displays them as up peaks in a separate spectrum (not shown here).

Spectroscopy - NMR

Chemical shifts of carbons vary based on similar reasons used to explain differing proton chemical shifts (i.e. electronegativity of environment and π bond anisotropy). Carbon chemical shifts occur over a wider range than proton chemical shifts showing greater dispersion due to σ_{para} . This means there is less chance of overlap in decoupled ¹³C spectrum, (but occasionally it is still happens).

Typical ¹³C shift values are provided below. As with proton chemical shifts, ¹³C chemical shift values can be calculated (predicted) with a fair amount of accuracy and there are a variety of ways to do so.

	220	200	180 1	60 1	40 1	20 10	00 8	0 6	0 4	40 2	20	0	- 20
C-CH ₃				1	1				 	*****		1 	
N-CH ₃					 				-				
О-СН3				 	 					 	 	1	
С-СН2-	-			1	1	 						1	i
Br—CH ₂ -				 	 						1 	1 1 1	
Cl—CH ₂ —	- 		 	 	 						 	1 1 1	
N-CH ₂ -		 		 	 	 					† 	+ ! !	1
0-CH2-	-		1	 	 				3335	ا حد ا ا	+ 	<u> </u> 	
с—сн				1	 					\$ \$ \$		1 1 1	
Br—CH			1	 	 					 	- - - -	 	
СІ—СН		 	 	 	<u> </u> 					 	 	<u> </u> 	
N-CH		 	 		, 					 	 	- - - -	
0-CH			 	 	 		\$ \$\$			 	+ + + +	+ ! !	
c−c <				1	 		1009			\$\$\$	<u> </u> 		
Br—C					 			}	الججج الججج	<u> </u> 	+		
 c⊢c⊱	 	 	 	 	 	 	22	<u>14441333</u>	1 1	 	 	<u> </u> 	<u> </u>
				 	 		<u>LŞ</u>	<u>2212221</u> [223][223]		 	 	 	
	 	 		 	 		<u> </u>	<u> 223 223 </u> 22 2225	<u>}}</u>	 	 	<u> </u> 	
alkynes		 		 	 	1	<u> </u>	221222 221222	 	 	 	 	
—C≡C— nitriles		 		1 	 [{{{}	 {{{}}}		<u> </u>	 	 	 	<u> </u> 	<u> </u>
C≡N aromatics and alkenes	3	 		- 	<u>}}</u>	<u>}</u>			' 		¦ +	i 	-i
		 	1						 	i I I			
Ar—H			 						 	 	 	 	
anhydrides O=C					 				 	 			
o=C				2000 2000 2000	 				 	 	 	- - - -	
amides O=C				 	 				 		 	1 1 1	
carboxylic acids O=C				 	 				 	1	 	+ 	
aldehydes O=C			 	 	 			 	 	 	+ 	 	
ketones O=C			- 	 	 				 	 	· · · ·	+	-+ - -
	220 3	200 1	1 80 16	1 50 14	10 12	1 10	0 80) 6($\frac{1}{2}$ 4	0 2	0	0 -	. 20

<u>Generic values of ${}^{13}C$ chemical shifts relative to TMS = 0 ppm</u>

T

Similar chemical shift information presented in a different format. Remember, proton decoupled carbons appear as singlets. When carbons are coupled to their hydrogens, carbons follow the N+1 rule. Methyls = q, methylenes = t, methines = d, and carbons without hydrogen appear as singlets = s. DEPT provides the same information. Carbon chemical shifts are spread out over a larger range than proton chemical shifts (they are more dispersed), so it is less likely that two different carbon shifts will fall on top of one another. The relative positions of various types of proton and carbon shifts have many parallel trends (shielded protons tend to be on shielded carbons, etc.)

Simple alkane	CH ₃ — CH ₂ —		—Сн—	—	
carbons	d ≽ 0 - 30 ppm (q)	$d \approx 20 - 40 \text{ ppm}$ (t)	d झ 30 - 50 ppi (d)	m d $\approx 30 - 60 \text{ ppm}$ (s)	
sp ³ carbon	CH ₃ -O	CH ₂ -O	—СН—О		
next to oxygen	d ⋦ 50 - 60 ppm (q)	d ≒ 55 - 80 ppm (t)	d झ 60 - 80 pp (d)	m d ≒ 70 - 90 ppm (s)	
sp ³ carbon	CH3-N	CH ₂ -N	—CH—N	—C—N	
next to nitrogen	d झ 10 - 50 ppm (q)	d ⋦ 35 - 55 ppm (t)	d ≒ 50 - 70 pp (d)	m d \approx 50 - 70 ppm (s)	
sp ³ carbon next to bromine or chlorin (X = Cl, Br)	o ne d	$CH_2 - X$ $\Rightarrow 25 - 50 \text{ ppm}$ (t)	CHX d ≒ 60 - 80 ppm (d)	$\begin{array}{c c} -C - X \\ C - X \\ d \iff 60 - 80 \text{ ppm} \\ (s) \end{array}$	
sp carbon (alky	hes) $-C \equiv C - \delta \approx 70 - 90$	s	p carbon (nitriles)	C≡N δ ≈ 110 - 125 ppm	
sp ² carbon (alke and aromatics)	nes $\delta \approx 100 - 1$ simple sp ² resonance donation resonance withdrawa	$ \begin{array}{c} H \\ 40 \text{ ppm} \\ \text{carbon} \\ \text{moves } \delta \text{ lower,} \\ \text{l moves } \delta \text{ higher} \\ \end{array} $	$\delta \approx 140 - 10$ p^2 carbon attached to X = oxygen, nitrogen onjugated with a carb	C - X 50^+ ppm an electronegative atom , halogen) or C _{β} carbon bonyl group	
$\delta \approx 160 - 180 \text{ ppm}$ carboxyl carbons (acids, esters, amides) (s)		δ झ 180 - 210 ppm aldehyde carbons, lower values when conjugated (d)		$\delta \rightleftharpoons 180 - 220 \text{ ppm}$ ketone carbons, lower values when conjugated (s)	

sp³ Carbon Chemical Shift Calculations

Calculations for sp³ carbon ¹³C chemical shifts of functionalized carbon skeletons can be performed starting from the actual shifts found in the corresponding alkane skeleton, and introducing corrections factors based on the functionality present in the molecule. This assumes that the alkane ¹³C shifts are available, which is why several examples are provided below.

Examples of C_n alkanes as possible starting points for calculation ¹³C shifts in ppm.

<u>Approximate ¹³C shift calculation from scratch.</u>

If such a starting point is not available, then calculations of the individual ¹³C shifts of the corresponding alkane can be approximated starting from the chemical shift of methane (-2.3 ppm). Correction factors are included for directly attached carbon atoms ($C_{\alpha} = +9.1$), once removed carbon atoms ($C_{\beta} = +9.4$) and twice removed carbon atoms ($C_{\gamma} = -2.5$). Steric corrections are also made when there is a greater density of highly substituted carbons near one another. Finally, the alkane ¹³C shift values are then modified by correction factors for any appropriate substituent(s). The example alkane, just below, is not present in those listed above. The actual chemical shifts of this alkane are known, so we can check how accurate our calculated values compare with the real values. Once we have demonstrated how to calculate the ¹³C chemical shifts of an alkane, we will introduce a few substituents to show how they change the chemical shifts of nearby carbons.

An alkane carbon atom's ¹³C shift is affected most by the directly attached carbons (C_{α}), and carbons once removed (C_{β}). Both types of carbon neighbors are deshielding by about 9 ppm. Any carbon atoms just beyond the C_{β} carbons are called C_{γ} carbons, and are slightly shielding by about -2.5 ppm. Finally, there is a steric correction factor required when there is a dense collection of near-by C_{α} and C_{β} carbon atoms.

The starting point (methane) for ¹³C chemical shift calculations = -2.3 ppm There is a C_{α} correction for all directly attached carbon atoms, $C_{\alpha} = +9.1$ ppm There is a C_{β} correction for carbons attached to C_{α} , $C_{\beta} = +9.4$ ppm There is a C_{γ} correction for carbons attached to C_{β} , $C_{\gamma} = -2.5$ ppm

Steric corrections are made according to substitution patterns of the carbon for which the calculation is being made and substitution patterns of all C_{α} positions, as indicated in the table below. Include a steric correction factor for each C_{α} carbon attached, if it is indicated.

The calculated carbon atom is:	primary	secondary	tertiary	quaternary
primary	0	0	-1.1	-3.4
secondary	0	0	-2.5	-7.5
tertiary	0	-3.7	-9.5	-15.0
quaternary	-1.5	-8.4	-15.0	-25.0

The attached C_{α} carbons are:

The "more precise" formula for calculating an sp³ carbon¹³C chemical shift is as follows.

 $\delta_{\rm C} = (-2.3) + (\#C_{\alpha})(9.1) + (\#C_{\beta})(9.4) + (\#C_{\gamma})(-2.5) + (\text{steric corrections}) \text{ ppm}$

The 13 C chemical shift calculations of 2,2,3,5-tetramethylpentane are provided as examples. The actual chemical shifts are also provided for comparison. The calculated carbon shifts in this example range from 0.4 ppm to 5.6 ppm off.

Spectroscopy - NMR

$$\delta_{C} = -2.3 + (\#C_{\alpha})(9.1) + (\#C_{\beta})(9.4) + (\#C_{\gamma})(-2.5) + (steric corrections) ppm$$

As mentioned above, the known or calculated chemical shifts of a similar alkane structure can serve as a starting point for estimating the chemical shifts of a similar functionalized carbon skeleton. This requires making a correction to the carbons near-by the functional group. Two correction values are provided for each substituent, depending on whether the substituent is at the end of a chain (terminal) or in the middle of a chain (internal). Several substituent values are provided in side-by-side tables that follow.

An example showing how a substituent value can be estimated.

A table of corrections factors for "X" substituents on alkane skeletons (in terminal and internal positions) is provided on the next two pages. Average correction factors for C_{α} , C_{β} and C_{γ} carbons relative to substituent. C_{δ} is assumed small enough to ignore (not always true). We are also not considering the influence of conformational factors (shapes), which can be significant in relatively rigid systems (e.g. chair conformations can influence chemical shifts).

Z:\classes\318\NMR_Info_Tables_9-9-14.DOC

Beauchamp

$$R \xrightarrow{\alpha}_{\beta} \gamma$$

	X is attached to a terminal carbon atom (ppm)				X is attached to an internal carbon atom (ppm)		
Substituent = X	C_{α} correction	C_{β} correction	C_{γ} correction	C_{α} correction	C_{β} correction	C_{γ} correction	
CH ₃	9	9	-2	6	8	-2	
CH ₂ CH ₃	18	7	-2	9	6	-2	
CH(CH ₃) ₂	26	4	-2	14	3	-2	
C(CH ₃) ₃	32	2	-2	20	1	-2	
ССH ₂	20	6	-1	15	5	-1	
сЩсн	5	5	-4	2	6	-4	
	23	9	-2	17	7	-2	

	a terminal carbo	n atom (ppm)	X is attached to an internal carbon atom (ppm			
Substituent = X	C_{α} correction	C_{β} correction	C_{γ} correction	C_{α} correction	C_{β} correction	C_{γ} correction
——он	48	10	-6	44	7	-4
OR	60	7	-6	57	5	-6
O	51	6	-6	49	5	-6
NH ₂	28	10	-5	24	8	-5
NH(CH ₃)	38	8	-5	32	5	-4
N(CH ₃) ₂	45	5	-5	37	3	-4
	26	7	-5	21	5	-5
NO ₂	62	5	-5	58	2	-5

Spectroscopy - NMR

X is attached to a terminal carbon atom (ppm)			X is attached to an internal carbon atom (ppm)			
Substituent = X	C_{α} correction	C_{β} correction	C_{γ} correction	C_{α} correction	C_{β} correction	$C_{\gamma} correction$
——F	70	8	-7	67	5	-7
——CI	31	10	-5	36	8	-5
Br	20	10	-4	28	10	-4
——I	-7	11	-2	7	11	-2
Сн	30	0	-3	24	-1	-3
O CH3	31	1	-3	26	0	-3
СОН	22	2	-3	18	1	-3

	X is attached to	a terminal carbo	n atom (ppm)	X is attached to an internal carbon atom (ppm)			
Substituent = XX is attached to a terminal carbon atom (ppr C_{α} correction C_{β} correction C_{γ} correction $-C_{\alpha}$ 202-3 $-C_{\alpha}$ 202-3 $-C_{\alpha}$ 253-3 $-C_{\alpha}$ 33-3 $-C_{\alpha}$ 332-3 $-C_{\alpha}$ 1110-3	C_{γ} correction	C_{α} correction	C_{β} correction	C_{γ} correction			
С ОСН3	20	2	-3	16	2	-3	
C	25	3	-3	19	2	-3	
——C=IIN	3	3	-3	3	3	-3	
	33	2	-3	30	2	-3	
SH	11	10	-3	12	8	-3	
SR	22	8	-3	20	6	-3	

Spectroscopy - NMR

Possible starting point values for calculating ¹³C chemical shifts (ppm) in cycloalkanes. Use internal substituent corrections from table above. Rigid or preferred conformations may alter these calculated values in a real structure.

Correction factors for calculating alkene ¹³C chemical shifts. The starting point value is 123.3 from ethane (ethlylene). The first table assumes a hydrocarbon skeleton, which can then be modified using the alkane substituent correction factors above. The second table looks at specific substituents on alkene carbon atoms. Two columns are listed in each table. One column (α , β , γ) for when the substituent is directly attached to the carbon whose chemical shift is being calculated, and a second column (α ', β ', γ ') for when the substituent is on the other carbon of the double bond.

Alkene corrections for alkane branches.

 $\delta_{C1} \text{ calculated chemical shift} = 123.3 + [10.6\alpha + 7.2 \beta - 1.5\gamma] - [7.9 \alpha' + 1.8\beta' - 1.5 \gamma'] + (\text{steric corrections})$

Steric corrections:

C_{α} and C_{α} ' are trans	0
C_{α} and C_{α}' are are cis	-1.1
2 x alkyl substituents at C_1	-4.8
2 x alkyl substituents at C_2	+2.5
(2 or more) x substituents at C_{β}	+2.3

Spectroscopy - NMR

Alkene corrections for specific substituents. If you don't find an exact match for your substituent, you might be able to approximate it using one of the values below.

Substituent	А	В
-H	0	0
-CH ₃	12.9	-7.4
-CH ₂ CH ₃	19.2	-9.7
-CH ₂ CH ₂ CH ₃	15.7	-8.9
-CH(CH ₃) ₂	12.9	-7.4
-C(CH ₃) ₃	26.5	-14.5
-CH=CH ₂	13.6	-7
-C ₆ H ₅	12.5	-11
-CCH	-6.5	+5.2
$\begin{array}{c} -CH_{2}Cl \\ -CH_{2}Br \\ -CH_{2} I \\ -CH_{2}OH \\ -CH_{2}OH \\ -CH_{2}NH_{2} \\ -CH_{2}OCH_{3} \\ -CH_{2}OCH_{2}CH_{3} \\ -CH_{2}C_{5}H_{6} \end{array}$	10.2 10.9 14.2 14.2 16.7 29.4 28.6 14.2	-6 -4.5 -4.0 -8.4 -9.8 -38.9 -36.9 -7.5
-COOH	5.0	-9.8
-COOCH ₃	5.2	+7.3
-CONH ₂	6.0	+7.1
-COCl	8.1	+14.0
-CH=O	15.3	+14.0
-COCH ₃	13.8	+4.7
-CN	-15.1	+14.2
-OCH ₃	29.4	-38.9
-OCH ₂ CH ₃	28.6	-36.9
-OCOCH ₃	18.4	-26.7
-NO ₂	22.3	-0.9
-Si(CH ₃) ₃	16.9	+6.7
-F	24.9	-34.3
-Cl	2.6	-6.1
-Br	-8.6	-0.9
-I	-38.1	7.0
-H	12.9	-7.4

Spectroscopy - NMR

39

para

0

-2.9

Correction factors for calculating aromatic ¹³C chemical shifts. The starting point value is 128.5 from benzene. Four columns are listed. The first column is called "ipso" corrections and is used when the substituent is directly attached to the carbon in the benzene ring. The other columns are used when the carbon shift being calculated is ortho, meta or para to the substituent carbon. Multiple corrections should be made when multiple substituents are present. Each substituent may have a different relationship with each of the carbon atoms in the benzene ring. The more substituents that are present, the less reliable is the chemical shift calculation.

Substituent

-H

-CH₃

	$-CH_2CH_3$	11./	-0.5	0	-2.6
	-CH ₂ CH ₂ CH ₃	14.2	0	-0.2	-2.8
	$-CH(CH_3)_2$	20.3	-2.1	-0.2	-2.7
	$-C(CH_3)_3$	22.5	-3.1	-0.3	-3.1
	-CH=CH ₂	9.2	-2.3	0	-0.7
	$-C_6H_5$	8.1	-1.1	-0.5	-1.1
	-CCH	-6.3	3.6	-0.2	-0.2
_	СЦЕ	7.0	1	0.1	0.2
	$-CH_2\Gamma$	7.9	-1	0.1	0.2
	$-CH_2CI$	9.0	0.2	0°	-0.2
	CH.OH	12.4	0.5	0.2	-0.2
	-CH ₂ OH	1/ 9	-1.5	-0.1	-1.1
		9.8	-1.5	-0.8	-1.0
	-CH ₂ OCH ₃	12.9	-0.1	-0.0	-0.5
	-011205116	12.7	0.4	-0.1	-2.3
	-COOH	2.1	-1.6	-0.1	5.2
	-COOCH ₃	2.0	1.2	-0.1	4.3
	-CONH ₂	5.7	-1.0	0.4	3.7
	-COCl	4.7	2.9	0.5	6.9
	-CH=O	8.2	1.2	0.6	5.8
	-COCH ₃	8.9	-0.1	-0.1	4.4
	-CN	-16.0	3.6	0.6	4.3
-	-OCH2	33.5	-14 4	1.0	-77
	-OCH ₂ CH ₂	30.5	-13.9	0.9	-79
	-OCOCH	22.4	-7.1	-0.4	-32
	e e e e en,			011	
	$-NO_2$	19.8	-5.0	0.9	6.2
	-Si(CH ₃) ₃	11.9	4.8	-0.7	0.3
	-F	33.6	-13.0	1.6	-4.5
	-Cl	5.3	0.4	1.4	-1.9
	-Br	-5.4	3.4	2.2	-1.0
	-I	-31.2	8.9	1.6	-1.1

 $\delta_{\rm C}$ calculated chemical shift = 128.5 + any corrections listed below.

ipso

0

9.3

11 7

ortho

0

0.7

meta

0

-0.1

Beauchamp ¹³C NMR Problems Beauchamp

Name

Use the molecular formulas along with the ¹³C chemical shifts and multiplicities to determine a reasonable structure for the following molecules (There may be more than one reasonable possibility.) The multiplicities are s = singlet, d = doublet, t = triplet, q = quartet. The degree of unsaturation can help determine the possible number of rings and/or π bonds. Draw an approximate sketch of each spectrum. Use arrows drawn from each type of carbon pointing to the appropriate chemical shift to indicate the correct correspondence.

- 1. C₈H₁₈ 24.9d, 25.5q, 30.2q, 31.2s, 53.4t
- 2. C₅H₁₁Cl 22.0q, 25.7d, 41.6t, 43.1t
- 3. C₄H₈O₂ 14.4q, 20.9q, 60.4t, 170.7s
- 4. C₄H₇Br 17.5q, 32.9t, 127.8d, 131.0d
- 5. C₆H₈O 18.7q, 130.2d, 130.4d, 141.6d, 153.3d, 193.0d
- 6. C₉H₁₂ 21.2q, 127.2d, 137.5s
- 7. $C_6H_{15}NO$ 27.0t, 27.9t, 34.2t, 34.9t, 43.2t, 62.9t
- 8. $C_9H_{10}O$ 8.2q, 31.6t, 128.0d, 128.6d, 132.8d, 137.2s, 200.0s
- 9. $C_5H_8O_2$ 14.4q, 60.4t, 129.3t, 130.0d, 166.0s
- 10. $C_9H_{10}O_3$ 56.0q, 56.1q, 109.4d, 110.7d, 126.5d, 130.3s, 149.8s, 154.6s, 190.7d
- 11. $C_{12}H_{14}O_4$ 14.2q, 61.5t, 129.0d, 131.1d, 132.7s, 167.5s
- 12. $C_9H_8O_3$ 115.4d, 115.9d, 125.4s, 130.0d, 144.2d, 159.7s, 168.1s
- 13. $C_8H_{11}N$ 13.0q, 23.9t, 115.4d, 118.6d, 126.8d, 128.0s, 128.4d, 144.3s
- 14. C₁₁H₁₄O 14q, 23t, 26t, 38t, 128d, 129d, 132d, 136s, 201s
- 15. C₄H₁₁N 13q, 44q, 52t
- 16. C₄H₈O 14q, 16t, 45t, 202d
- 17. C₅H₁₂O 22q, 24t, 42d, 62t
- 18. C₁₀H₉NO₂ 15q, 62t, 116s, 118s, 129d, 132d, 134s, 165s
- 19. C₉H₉ClO 39t, 41t, 127d, 128d, 133d, 136s, 196s
- 20. $C_{13}H_{20}N_2O_2$ 12q(x2), 46t(x2), 51t, 63t, 114d, 120s, 131d, 151s, 166s
- 21. C₁₁H₁₄O 27q, 44s, 127d, 127.5d, 131d, 138s, 209s
- 22. C₃H₄Br₂O₂ 28.8t, 40.4d, 173.6s
- 23. C₃H₅Br 32.6t, 118.8t, 134.2d
- 24. C₃H₆Cl₂ 22.4q, 49.5t, 55.8d

Beauchamp Spectroscopy - NMR Possible approach for solving a structure problem.

Each structure is a puzzle made of an unknown number of pieces that you create. Your goal is to use the spectral data to make the pieces of your puzzle as few as possible (big pieces make fewer pieces). It's easier to solve a 25 piece puzzle than a 1000 piece puzzle. Your goal is to make a two piece puzzle that only fits together one way. It's not always possible, but that's the goal. The more pieces there are, the more difficult your choices.

If you have access to some of the more modern NMR experiments, it can make your job of structure determination relatively straightforward. However, there is a lot of information to organize (organized = easy, unorganized = impossible). My strategy for "organizing" the information is provided in the next pages.

- 1. From the ¹³C and DEPT data identify each carbon piece. Look for aspects of symmetry that will make some carbon atoms equivalent. Chemical shifts of protons and carbons provide clues about nearby functionality.
- 2. Use the HETCOR to pair up carbons with their attached protons. Double check assignments with DEPT.
- 3. Use the COSY cross peaks to connect the coupled proton/carbon pieces from the HETCOR data (#2). Double check the COSY fragment patterns with the multiplicities in the proton NMR spectrum to see if they are consistent.
- 4. Proton and carbon chemical shifts provide hints and suggestions about nearby heteroatoms (N,O,halogens,etc.) and pi bond patterns (alkenes, alkynes, aromatics, carbonyl groups, nitriles, etc.). Multiple functionality producing smaller shifts can produce a large shift from a single stronger influencing functional group. Using chemical shifts this way may help locate quaternary carbon centers and heteroatoms (e.g. next to ester carbon side or next to ester oxygen side). HMBC (explained later) is very helpful for placing quaternary carbon atoms.

These are all considered "quaternary" centers (carbon atoms without any attached hydrogen atom). The lack of an attached hydrogen takes away connectivity clues in the COSY and HETCOR spectra (explained later).

Remember resonance effects can be both shielding (more electron density, smaller δ) and deshielding (less electron density, larger δ).

Inductive withdrawing effects are deshielding and not usually completely additive.

- 5. Look for symmetry features in the proton and carbon NMR spectra. Count the number of carbon atoms in the ¹³C NMR and the number of protons in the H NMR to help make a formula (rule of 13). Estimate the number of heteroatoms (N,O,halogens) to modify your formula (use the IR functional groups and the H NMR and ¹³C NMR chemical shifts). Calculate a degree of unsaturation and use the ¹³C to estimate the number of pi bonds, and by difference determine the number of rings in your structure.
- 6. Look for end pieces of your puzzle that only connect one way, and middle pieces that connect 2, 3, or more ways and try to fit them together based on expected chemical shifts.

A possible worksheet to help solve your structure problems is provided just below.

Beauchamp

Structure Problem Worksheet

¹³ C / DEPT	HETCOR	COSY	HMBC	NOE and/or NOESY

Beauchamp	Spectroscopy - NMR	Spectroscopy - NMR			
Advantages of other 1I	and 2D NMR experiments. DEPT	COSY	HETCOR	HMBC –	An Example

 1 <u>H NMR</u> – Integration indicates the number of hydrogen atoms at each chemical shift. The chemical shift provides information about the functional group environment around the protons, and the multiplicity provides information about neighboring "coupled" protons having different chemical shifts. Typical coupling includes geminal (2 bond coupling, both hydrogen atoms attached to the same carbon atom, as =CH₂ or as *-CH₂, where * = chiral center), vicinal coupling (3 bond coupling) and a few 4 bond couplings (allylic, meta, para, etc.) that we mostly ignore.

¹³C NMR and DEPT (distortion enhancement by polarization transfer) data

The ¹³C NMR shows each distinct type of carbon atom. If atoms are equivalent, by symmetry, they will appear as a single peak, often at approximately "n" times the intensity, where "n" is the number of similar carbons. When a carbon atom does not have any attached hydrogen atom its intensity is often weaker (a smaller peak appears), because it relaxes so slowly it does not give a full intensity response with each pulse (excitation). Such carbons are often referred to as "quaternary" carbon atoms. DEPT shows the number of hydrogens on each carbon, as indicated below.

Top spectrum = DEPT-135 13 C NMR - CH₃ and CH appear (up) and CH₂ appears (down)

BeauchampSpectroscopy - NMRHH COSY spectrum (Proton-Proton Correlation Spectroscopy)

The diagonal peaks show the same peaks and chemical shifts that are seen in the normal proton NMR, and are not helpful. However, the *cross peaks* (off diagonal peaks) show proton/proton correlations with "coupled neighbor" protons, and can trace out a path of connectivity in each spin system (a spin system is a continuous path of coupled protons). *Connect the dots* to construct the *spin systems* within a structure.

COSY: H-H correlations: diagonal peaks do not provide any additional information, but cross peaks appear whereever different neighbor protons are coupled.

Beauchamp HETCOR spectrum

The peaks (dots) show carbon atoms and proton atoms that are directly attached to one another (one bond coupling), as in a direct C-H bond. This is detected via one bond C-H coupling constants $({}^{1}J_{CH})$, which are large (around 120-160 Hz). In a sense, you could say that we are looking for the coupling patterns about 140 times per second and these interactions are repeatedly reinforced, while other coupling is random (sometimes + and sometimes -) and cancels out. Once you have made these C-H connections, the COSY spectrum will not only show neighbor protons, but it will also show neighbor carbon atoms attached to those protons.

Beauchamp HMBC spectrum

The peaks (dots) show carbon atoms and proton atoms that are two and three bonds away from one another (2 and/or 3 bond coupling). This is detected via two and three bond C-H coupling constants ($^{2/3}J_{CH}$ around 7-10 Hz), which are much smaller than one bond coupling. This is especially helpful for quaternary carbon atoms which do not show coupling to neighbor carbons or protons, (in our course).

HMBC = heteronuclear multiple bond correlation

Detection of CH coupling is timed to the approximate coupling between the coupled atoms. In this case of HMBC this is approximately 10 Hz. In a sense we are looking for a signal 10 times per second. Smaller or larger coupling usually tends to average towards zero. It is possible that expected coupling will not be present and unexpected coupling will appear. These complications are excluded in our simple approach to problems. Correlations with quaternary carbons (no attached hydrogen atoms) are especially helpful.

HMBC correlations = \bigcirc Shows carbon couplings to protons 2 and 3 bonds away.

If you organize all of this information in a compact way (the one page worksheet) so you can confirm or reject structure possibilities, it becomes quite straight forward to construct a reasonable structure of the molecule. Left out of our discussion are issues of relative stereochemistry. There are other NMR experiments (NOE, NOESY, ROESY) that help resolve these details, but we will not discuss them in this course.

¹³ C /	DEPT	HETCOR	COSY	HMBC	NOE and/or NOESY
210.1	C=O ketone			3.65, 3.04, 2.79, 2.45, 1.76	
62.4	CH ₂ -O	3.53	1.76	3.65, 2.45, 1.76	
49.3	CH ₂	2.79 3.04	3.04 , 3.65 2.79 , 3.65	3.65, 2.45, 1.79	
38.1	CH ₂	2.45	1.76	3.53, 3.04, 2.79, 1.76	
37.0	СН	3.65	3.04, 2.79, 1.79	3.04, 2.79, 2.45, 1.76	
32.6	CH ₂	1.79	3.65, 0.96	3.65, 3.04, 2.79, 1.79, 0.96	
25.5	CH ₂	1.76	2.45, 3.53	3.53, 2.45	
10.0	CH ₃	0.96	1.79	3.65, 1.79	

Structure Problem Worksheet

Answer

Proton Data

