Infrared Tables (short summary of common absorption frequencies)

The values given in the tables that follow are typical values. Specific bands may fall over a range of wavenumbers, cm^{-1}. Specific substituents may cause variations in absorption frequencies. Absorption intensities may be stronger or weaker than expected, often depending on dipole moments. Additional bands may confuse the interpretation. In very symmetrical compounds there may be fewer than the expected number of absorption bands (it is even possible that all bands of a functional group may disappear, i.e. a symmetrically substituted alkyne!). Infrared spectra are generally informative about what functional groups are present, but not always. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR's are often just as informative about functional groups, and sometimes even more so in this regard. Information obtained from one spectroscopic technique should be verified or expanded by consulting the other spectroscopic techniques.

IR Summary - All numerical values in the tables below are given in wavenumbers, $\mathbf{c m}^{-1}$

Bonds to Carbon (stretching wave numbers)

Stronger dipoles produce more intense IR bands and weaker dipoles produce less intense IR bands (sometimes none).

Bonds to Hydrogen (stretching wave numbers)

Carbonyl Highlights (stretching wave numbers)

| Aldehydes |
| :--- | :--- | :--- |

$\mathbf{s p}^{2} \mathbf{C - H}$ bend patterns for alkenes			$\mathbf{s p}^{2} \mathbf{C - H}$ bend patterns for aromatics		
alkene substitution pattern	descriptive alkene term	absorption frequencies $\left(\mathrm{cm}^{-1}\right)$ due to $\mathrm{sp}^{2} \mathrm{CH}$ bend	aromatic substitution pattern	descriptive aromatic term	absorption frequencies $\left(\mathrm{cm}^{-1}\right)$ due to $\mathrm{sp}^{2} \mathrm{CH}$ bend
	monosubstituted alkene	$\begin{gathered} 985-1000 \\ 900-920 \end{gathered}$		monosubstituted aromatic	$\begin{aligned} & 690-710 \\ & 730-770 \end{aligned}$
	cis disubstituted alkene	$\begin{gathered} 675-730 \\ \text { (broad) } \end{gathered}$		ortho disubstituted aromatic	735-770
	trans disubstituted alkene	960-990			
	geminal disubstituted alkene	880-900		meta disubstituted aromatic	$\begin{gathered} 680-725 \\ 750-810 \\ 880-900 \text { (sometimes) } \end{gathered}$
	trisubstituted alkene	790-840		para disubstituted aromatic	790-840
	tetrasubstituted alkene	none	Aromatic compo that show up bet pictures for con	have characteristic $1650-2000 \mathrm{~cm}^{-1}$). son (not here). A str up most of this regi	weak overtone bands Some books provide ong $\mathrm{C}=\mathrm{O}$ peak will on.

expansion of carbonyl $(\mathrm{C}=\mathrm{O})$ stretch region (units $=\mathrm{cm}^{-1}$)

IR Flowchart to determine functional groups in a compound (all values in cm^{-1}).

deshielding side $=$ less electron rich (inductive \& resonance) Typical ${ }^{1} \mathbf{H}$ and ${ }^{13} \mathbf{C}$ NMR chemical shift values. $\quad \begin{gathered}\text { shielding side }=\text { more electron rich } \\ \text { (inductive } \& \text { resonance) }\end{gathered}$

Calculation of chemical shifts for protons at $\mathbf{s p}^{\mathbf{3}}$ carbons

Estimation of $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ chemical shifts with multiple substituent parameters for protons within 3 C 's of consideration.
$\alpha=$ directly attached substituent, use these values when the hydrogen and substituent are attached to the same carbon $\beta=$ once removed substituent, use these values when the hydrogen and substituent are on adjacent (vicinal) carbons $\gamma=$ twice removed substituent, use these values when the hydrogen and substituent have a 1,3 substitution pattern

Calculations are generally close to actual chemical shifts for a single substituent, but are less reliable as the number of substituent factors goes up. Multiple substituent factors tend to overestimate an actual chemical shift.

$$
\begin{array}{rr}
\text { a. methine }=1.5+(1.4)_{\alpha}+(2.3)_{\alpha}+(0.2)_{\beta}=5.4 \mathrm{ppm} & \text { d. methyl }=0.9+(0.1)_{\alpha}=1.0 \mathrm{ppm} \\
\text { actual }=5.2 & \text { actual }=1.0
\end{array}
$$

Spectroscopy Data Tables
Estimated chemical shifts for protons at alkene sp ${ }^{\underline{2}}$ carbons

Substituent	$\alpha_{\text {geminal }}$	$\alpha_{\text {cis }}$	$\alpha_{\text {trans }}$
H- Hydrogen	0.0	0.0	0.0
$\begin{aligned} & \text { R- } \\ & \text { Alkyl } \end{aligned}$	0.5	-0.2	-0.3
$\overline{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2-}}$ Benzyl	0.7	-0.2	-0.2
$\overline{\mathrm{X}-\mathrm{CH}_{2}-}$ Halomethyl	0.7	0.1	0.0
(H)/ $\mathrm{ROCH}_{2}-$ alkoxymethyl	0.6	0.0	0.0
$\overline{(\mathrm{H})_{2} / \mathrm{R}_{2} \mathrm{NCH}_{2}-}$ aminomethyl	0.6	-0.1	-0.1
$\begin{aligned} & \mathrm{RCOCH}_{2-} \\ & \alpha \text {-keto } \end{aligned}$	0.7	-0.1	-0.1
$\begin{aligned} & \mathrm{NCCH}_{2}- \\ & \alpha \text {-cyano } \end{aligned}$	0.7	-0.1	-0.1
$\overline{\mathrm{R}_{2} \mathrm{C}=\mathrm{CR}-}$ Alkenyl	1.2	0.0	0.0
$\mathrm{C}_{6} \mathrm{H}_{5}-$ Phenyl	1.4	0.4	-0.1
F- Fluoro	1.5	-0.4	-1.0
Cl- Chloro	1.1	0.2	0.1
Br- Bromo	1.1	0.4	0.6
$\begin{aligned} & \hline \text { I- } \\ & \text { Iodo } \\ & \hline \end{aligned}$	1.1	0.8	0.9
RO- akoxy (ether)	1.2	-1.1	-1.2
$\begin{aligned} & \mathrm{RCO}_{2^{-}} \\ & \text {O-ester } \\ & \hline \end{aligned}$	2.1	-0.4	-0.6
$(\mathrm{H})_{2} / \mathrm{R}_{2} \mathrm{~N}-$ N -amino	0.8	-1.3	-1.2
RCONH- N -amide	2.1	-0.6	-0.7
$\begin{aligned} & \hline \mathrm{O}_{2} \mathrm{~N}- \\ & \text { Nitro } \\ & \hline \end{aligned}$	1.9	1.3	0.6
RS- Thiol	1.1	-0.3	-0.1
OHC- Aldehyde	1.0	1.0	1.2
ROC- Ketone	1.1	0.9	0.7
$\mathrm{HO}_{2} \mathrm{C}$ - C-acid	0.8	1.0.	03
$\begin{aligned} & \hline \mathrm{RO}_{2} \mathrm{C}- \\ & \mathrm{C} \text {-ester } \\ & \hline \end{aligned}$	0.8	1.0	0.5
$\mathrm{H}_{2} \mathrm{NOC}-$ C-amide	0.4	1.0	0.5
NC- Nitrile	0.3	0.8	0.6

Substitution relative to calculated "H"

$\delta(\mathrm{ppm})=5.2+\alpha_{\mathrm{gem}}+\alpha_{\text {cis }}+\alpha_{\text {trans }}$

Example Calculation

δ gem $=5.2+1.4$	$=6.6$
actual	$=6.6$
δ trans $=5.2-0.1$	$=5.1$
actual	$=5.1$
δ cis $=5.2+0.4$	$=5.7$
actual	$=5.6$

Spectroscopy Data Tables

Estimated chemical shifts for protons at aromatic sp $\underline{\underline{2}}^{\underline{2}}$ carbons

Substituent	α ortho	α meta	人 para
H-	0.0	0.0	0.0
Hydrogen			
$\mathrm{CH}_{3}{ }^{-}$	-0.2	-0.1	-0.2
Methyl			
$\mathrm{ClCH}_{2}{ }^{-}$	0.0	0.0	0.0
Cholromethyl			
$\mathrm{Cl}_{3} \mathrm{C}-$	0.6	0.1	0.1
Halomethyl			
$\mathrm{HOCH}_{2}{ }^{-}$	-0.1	-0.1	-0.1
Hydroxymethyl			
$\mathrm{R}_{2} \mathrm{C}=$ CR-	0.1	0.0	-0.1
Alkenyl			
$\mathrm{C}_{6} \mathrm{H}_{5}-$	1.4	0.4	-0.1
Phenyl			
F-	-0.3	0.0	-0.2
Fluoro			
Cl-	0.0	0.0	-0.1
Chloro			
Br-	0.2	-0.1	0.0
Bromo			
I-	0.4	-0.2	0.9
Iodo			
HO-	-0.6	-0.1	-0.5
Hydroxy			
RO-	-0.5	-0.1	-0.4
Alkoxy			
$\mathrm{RCO}_{2}{ }^{-}$	-0.3	0.0	-0.1
O-ester			
$(\mathrm{H})_{2} / \mathrm{R}_{2} \mathrm{~N}$ -	-0.8	-0.2	-0.7
N -amino			
RCONH-	0.1	-0.1	-0.3
N -amide			
$\mathrm{O}_{2} \mathrm{~N}-$	1.0	0.3	0.4
Nitro			
RS-	-0.1	-0.1	-0.2
thiol/sulfide			
OHC-	0.6	0.2	0.3
Aldehyde			
ROC-	0.6	0.1	0.2
Ketone			
$\mathrm{HO}_{2} \mathrm{C}$ -	0.9	0.2	0.3
C-acid			
$\mathrm{RO}_{2} \mathrm{C}$ -	0.7	0.1	0.2
C-ester			
$\mathrm{H}_{2} \mathrm{NOC}-$	0.6	0.1	0.2
C-amide			
NC-	0.4	0.2	0.3
Nitrile			

Substitution relative to calculated "H"

$\delta(\mathrm{ppm})=7.3+\alpha_{\text {ortho }}+\alpha_{\text {meta }}+\alpha_{\text {para }}$

Example Calculation

1. $\delta\left(\mathrm{CH}_{3}\right)=0.9+2.8=3.7$
actual $=3.8$
2. $\delta(2)=7.3+(-0.5)_{\text {ortho }}+(-0.1)_{\text {para }}=6.7$ actual $=6.8$
3. $\delta(3)=7.3+(-0.2)_{\text {ortho }}+(-0.4)_{\text {para }}=6.7$ actual $=7.1$
4. $\delta\left(\mathrm{CH}_{2}\right)=1.2+(0.8) \alpha+(1.4) \alpha=3.4$ actual $=3.3$
5. $\delta(5)=5.2+(0.7) \mathrm{gem}=5.9$

$$
\text { actual }=5.9
$$

6. $\delta(6)=5.2+(-0.2)_{\text {trans }}=5.0$
actual $=5.1$
7. $\delta(7)=5.2+(-0.2)_{\mathrm{cis}}=5.0$ actual $=5.1$

Real Examples of Combination Effects on Chemical Shifts

electronegative substituent and distance from protons

1. One nearest neighbor proton
observed proton

Bo
one neighbor
 proton $=\mathrm{H}_{\mathrm{a}} \quad \square$ increasing δ \qquad

Protons in this environment have a small cancellation of the external magnetic field, B_{0}, and produce a smaller energy transition by that tiny amount.

Protons in this environment have a small additional increment added to the external magnetic field, B_{0}, and produce a higher energy transition by that tiny amount.

2. Two nearest neighbor protons (both on same carbon or one each on separate carbons)

3. Three nearest neighbor protons (on same carbon, or two on one and one on another, or one each on separate carbons)

three neighbor protons are like three small magnets that can be arranged eight possible ways (similar to flipping a coin thrice)

three equal energy populations at each of middle transitions

Combinations or these are possible.
$\overline{\mathrm{dd}}=\mathrm{doublet}$ of doublets; $\quad \mathrm{ddd}=$ doublet of doublet of doublets; dddd = doublet of doublet of doublet of doublets; dt $=$ doublet of triplets $\mathrm{td}=$ triplet of doublets; etc.

Typical Coupling Constants

Range	Typical		Range	Typical
$0-30 \mathrm{~Hz}$	14 Hz		$0-3 \mathrm{~Hz}$	1 Hz
hemical shifts tereotopic		cis / allylic coupling, notice through 4 bonds		

geminal protons - can have differe and split one another if they are	mical sh eotopic		cis / allylic coupling, notice through 4 bonds		
 vicinal protons are on adjacent atoms rotating coupling averages out to ab	Range $6-8 \mathrm{~Hz}$ en freely $7 \mathrm{~Hz}$	Typical 7 Hz	 trans / allylic coupling, notice through 4 bonds	Range $0-3 \mathrm{~Hz}$	Typical 1 Hz
	Range $0-12 \mathrm{~Hz}$ depends angle, see Karplus	Typical $7 \mathrm{~Hz}$ dihedral plot of quation	 sp^{2} vicinal coupling (different π bonds)	Range $9-13 \mathrm{~Hz}$	Typical 10 Hz
 protons rarely couple through 4 che unless in a special, rigid shapes (i.e.	Range $0-1 \mathrm{~Hz}$ bonds oupling)	Typical $0 \mathrm{~Hz}$	 sp^{3} vicinal aldehyde coupling	Range $1-3 \mathrm{~Hz}$	Typical $2 \mathrm{~Hz}$
 sp^{2} geminal coupling	Range $0-3 \mathrm{~Hz}$	Typical 2 Hz	 sp^{2} vicinal aldehyde coupling	Range $5-8 \mathrm{~Hz}$	Typical 6 Hz
 sp^{2} cis (acylic) coupling (always smaller than the trans isomer)	Range $5-11 \mathrm{~Hz}$	Typical 10 Hz	 sp / propargylic coupling notice through 4 bonds	Range 2-3 Hz	Typical 2 Hz
	$\begin{gathered} \text { Range } \\ 11-19 \mathrm{~Hz} \end{gathered}$	Typical 17 Hz	 bis-propargylic coupling notice through 5 bonds	Range $2-3 \mathrm{~Hz}$	Typical $3 \mathrm{~Hz}$
	Range $4-10 \mathrm{~Hz}$	Typical 7 Hz	ortho, meta and para coupling to this proton	Range ortho $6-10 \mathrm{~Hz}$ meta $2-3 \mathrm{~Hz}$ para $0-1 \mathrm{~Hz}$	Typical $\begin{aligned} & 9 \mathrm{~Hz} \\ & 2 \mathrm{~Hz} \\ & 0 \mathrm{~Hz} \end{aligned}$

When J values are less than 1 Hz , it is often difficult to resolve them and a peak may merely appear wider and shorter.

Similar chemical shift information presented in a different format. Remember, proton decoupled carbons appear as singlets. When carbons are coupled to their hydrogens, carbons follow the $\mathrm{N}+1$ rule. Methyls $=\mathrm{q}$, methylenes $=\mathrm{t}$, methines $=\mathrm{d}$, and carbons without hydrogen appear as singlets $=\mathrm{s}$. DEPT provides the same information. Carbon chemical shifts are spread out over a larger range than proton chemical shifts (they are more dispersed), so it is less likely that two different carbon shifts will fall on top of one another. The relative positions of various types of proton and carbon shifts have many parallel trends (shielded protons tend to be on shielded carbons, etc.)

sp carbon (alkynes)	- $\mathrm{C} \equiv \mathrm{C} —$	sp carbon (nitriles)
$\delta \approx 70-90 \mathrm{ppm}$		
sp^{2} carbon (alkenes		
and aromatics)		

$\delta \simeq 160-180 \mathrm{ppm}$	$\delta \approx 180-210 \mathrm{ppm}$	$\delta \approx 180-220 \mathrm{ppm}$
carboxyl carbons (acids, esters, amides) (s)	aldehyde carbons, lower values when conjugated (d)	ketone carbons, lower values when conjugated (s)

Calculations of alkane ${ }^{13} \mathrm{C}$ chemical shifts not listed above.
sp^{3} Carbon Chemical Shift Calculations
Calculations for sp^{3} carbon ${ }^{13} \mathrm{C}$ chemical shifts of functionalized carbon skeletons can be performed starting from the actual shifts found in the corresponding alkane skeleton, and introducing corrections factors based on the functionality present in the molecule. This assumes that the alkane ${ }^{13} \mathrm{C}$ shifts are available, which is why several examples are provided below.

Examples of C_{n} alkanes as possible starting points for calculation ${ }^{13} \mathrm{C}$ shifts in ppm .

Steric Corrections for sp ${ }^{\underline{3}}$ - carbon chemical shift calculations

The calculated carbon atom is: \downarrow	primary	secondary	tertiary	quaternary
primary	0	0	-1.1	-3.4
secondary	0	0	-2.5	-7.5
tertiary	0	-3.7	-9.5	-15.0
quaternary	-1.5	-8.4	-15.0	-25.0

Approximate ${ }^{13} \underline{C}$ shift calculation from scratch.

$$
\delta_{C}=-(2)+9 x(\# \alpha+\# \beta)-2 x(\# \gamma)+\text { steric corrections }
$$

$$
\left.\begin{array}{l}
\mathrm{C} 1=-2+9(1+3)-2(2)+(-3)=29 \quad(\text { actual }=28.3) \\
\mathrm{C} 2=-2+9(4+2)-2(2)+[3 \mathrm{x}(-1.5)+(-15.0)]=28 \quad(\text { actual }=34.0) \\
\mathrm{C} 3=-2+9(3+5)-0(2)+[(-9.5)+(-15.0)]=45 \quad(\text { actual }=47.9) \\
\mathrm{C} 4=-2+9(3+2)-3(2)+(-9.5)=27 \\
\mathrm{C} 5=-2+9(1+2)-2(2)+(-1)=20 \\
\mathrm{C} 6=-2+9(1+2)-5(2)+(-1)=14
\end{array} \quad(\text { actual }=27.2) 8.5\right)
$$

${ }^{13} \underline{\mathrm{C}}$ shifts for various carbon alkane skeletons - useful starting points for calculating sp 3 carbon chemical shifts

Substituent = X	X is attached to C_{α} correction	terminal carbo C_{β} correction	n atom (ppm) C_{γ} correction	X is attached to C_{α} correction	an internal car C_{β} correction	on atom (ppm) C_{γ} correction
- OH	48	10	-6	44	7	-4
-OR	60	7	-6	57	5	-6
	51	6	-6	49	5	-6
$-\mathrm{NH}_{2}$	28	10	-5	24	8	-5
- $\mathrm{NH}\left(\mathrm{CH}_{3}\right)$	38	8	-5	32	5	-4
- $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$	45	5	-5	37	3	-4
	26	7	-5	21	5	-5
$-\mathrm{NO}_{2}$	62	5	-5	58	2	-5

Substituent = X	X is attached to a terminal carbon atom (ppm) C_{α} correction : C_{β} correction C_{γ} correction 70 8 -7			X is attached to an internal carbon atom (ppm) C_{α} correction C_{β} correction C_{γ} correction 67 5 -7		
--F						
- Cl	31	10	-5	36	8	-5
- Br	20	10	-4	28	10	-4
-1	-7	11	-2	7	11	-2
	30	0	-3	24	-1	-3
	31	1	-3	26	0	-3
	22	2	-3	18	1	-3

| | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Substituent $=\mathrm{X}$ | X is attached to a terminal carbon atom (ppm)
 C_{α} correction | C is attached to an internal carbon atom (ppm)
 C_{α} correction | C_{β} correction | C_{γ} correction |

Additional starting point for calculating. ${ }^{13} \mathrm{C}$ chemical shifts (ppm) of substituted benzene rings (just a few possibilities)

 128 ben	$\mathrm{ppm} \mathrm{~s}$ $\text { ene } \mathrm{c}$					Use co atom in substitu	ction lative t. Sta	for ition ith 1	on he pm.	Starting points for other common ring systems. (ppm). No correction terms included for substituents.
Substituent	Z_{1}	Z_{2}	Z_{3}	Z_{4}	Substituent	Z_{1}	Z_{2}		Z_{4}	
-H	0	0	0	${ }_{0}$	-OH	29	-13	1	-7	
$-\mathrm{CH}_{3}$	9	1	0	-3	$-\mathrm{OCH}_{3}$	34	-14	1	-8	
$-\mathrm{CH}_{2} \mathrm{CH}_{3}$	12	-1	0	-3	- $\mathrm{OC}_{6} \mathrm{H}_{5}$	28	-11	0	-7	naphathalene
- $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	10	0	0	-3	$-\mathrm{NH}_{2}$	18	-13	1	-10	136
$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	11	0	0	-3	$-\mathrm{NHCOCH}_{3}$	10	-8	0	-4	136
- $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	20	-2	0	-3	-NHOH	22	-13	-2	-5	
- $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	19	-3	0	-3	$-\mathrm{NHNH}_{2}$	23	-16	1	-10	ridine
- $\mathrm{CH}_{2} \mathrm{~F}$	8	-1	0	0	-N=N-R	22	-6	0	-3	pyridine
$-\mathrm{CH}_{2} \mathrm{Cl}$	9	0	0	0	-NO	37	-8	1	7	150
$-\mathrm{CH}_{2} \mathrm{Br}$	9	1	0	0	$-\mathrm{NO}_{2}$	20	-5	1	6	
$-\mathrm{CH}_{2} \mathrm{I}$	11	-1	0	-1	-SH	4	1	0	-3	108
$-\mathrm{CH}_{2} \mathrm{OH}$	12	-1	0	-1	$-\mathrm{SCH}_{3}$	10	-2	0	-4	1
$-\mathrm{CH}_{2} \mathrm{NH}_{2}$	15	-1	0	-2	-S(O) CH_{3}	18	-5	1	2	// pyrrole
$-\mathrm{CH}_{2} \mathrm{NO}_{2}$	2	2	1	1	$-\mathrm{SO}_{2} \mathrm{CH}_{3}$	12	-1	1	5	1118
$-\mathrm{CH}_{2} \mathrm{CN}$	2	0	-1	-1	$-\mathrm{SO}_{2} \mathrm{Cl}$	16	-2	1	7	+
$-\mathrm{CH}_{2} \mathrm{SH}$	12	-1	0	-2	-CN	-16	3	1	4	
$-\mathrm{CH}_{2} \mathrm{CHO}$	7	1	0	-1	- CHO	8	1	0	6	\square^{110}
- $\mathrm{CH}_{2} \mathrm{COCH}_{3}$	6	1	0	-2	$-\mathrm{COCH}_{3}$	9	0	0	4	/ furan
$-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$	6	1	0	-1	$-\mathrm{CO}_{2} \mathrm{H}$	2	2	0	5	4
$-\mathrm{CH}_{2}=\mathrm{CH}_{2}$	13	-3	0	-1	$-\mathrm{CO}_{2} \mathrm{CH}_{3}$	2	1	0	4	O 143
$-\mathrm{CCH}$	-6	4	0	0	$-\mathrm{CONH}_{2}$	5	-1	0	3	
$-\mathrm{C}_{6} \mathrm{H}_{5}$	8	-1	0	-1	$-\mathrm{COCl}$	11	0	0	-3	126
-F	34	-13	2	-4	-Li	-43	-13	2	3	/ thiophene
--Cl	5	0	1	2	$-\mathrm{MgBr}$	-36	-11	3	4	/
$-\mathrm{Br}$	-5	3	2	-1						125
-I	-31	9	2	-1						

Additional starting point for calculating ${ }^{13} \underline{C}$ chemical shifts (ppm) of substituted alkenes (just a few possibilities)

123 ppm starting point for alkene carbon

increments for directly attached carbon atoms

$$
\begin{array}{ll}
\alpha=11 & \alpha^{\prime}=-8 \\
\beta=5 & \beta^{\prime}=-2 \\
\gamma=-2 & \gamma^{\prime}=2
\end{array}
$$

steric corrections
for each pair of cis- α, α ' substituents for each pair of geminal- α, α substituents for each pair of geminal- α, α 'substituents if one or more β sutstituents are present
-1
-5
3
2

$\delta_{\mathrm{C}}=123 \mathrm{ppm}+\mathrm{Z}_{\mathrm{i}}$

Effect of substituents on alkene ${ }^{13} \mathrm{C}$ shifts (ppm)

Substituent	Z_{1}	$\mathrm{Z}_{2}-$
-H	0	0
$-\mathrm{CH}_{3}$	13	-7
$-\mathrm{CH}_{2} \mathrm{CH}_{3}$	17	-10
$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	16	-9
$-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	23	-12
$-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	26	-15
$-\mathrm{CH}_{2} \mathrm{Cl}$	10	-6
$-\mathrm{CH}_{2} \mathrm{Br}$	11	-5
$-\mathrm{CH}_{2} \mathrm{I}$	14	-4
$-\mathrm{CH}_{2} \mathrm{OH}$	14	-8
$-\mathrm{CH}_{\mathrm{H}} \mathrm{CH}$	14	-7
$-\mathrm{CCH}_{2}$	-6	6
$-\mathrm{C}_{6} \mathrm{H}_{5}$	12	-11

Substituent	Z_{1}	$\mathrm{Z}_{2}-$
-F	24	-34
-Cl	3	-6
-Br	-9	-1
-I	-38	7
$-\mathrm{OCH}_{3}$	29	-39
$-\mathrm{O}_{2} \mathrm{CCH}_{3}$	18	-27
$\left.-\mathrm{N}_{2} \mathrm{CH}_{3}\right)_{2}$	28	-32
$-\mathrm{NO}_{2}$	22	-1
$-\mathrm{CN}^{2}$	-15	14
$-\mathrm{SCH}_{2} \mathrm{CH}_{3}$	9	-13
$-\mathrm{CHO}_{2}$	15	14
$-\mathrm{COCH}_{3}$	14	5
$-\mathrm{CO}_{2} \mathrm{H}$	5	10
$-\mathrm{COCl}^{-}$	8	14

Common fragmentation patterns in mass spectroscopy

1. Branch next to a π bond

2. Branch next to an atom with a lone pair of electrons

radical cation $\quad \mathrm{X}$ lone pair electrons partially fill in loss of electrons at carbocation site via resonance. This is a common fragmentation for any atom that has a lone pair of electrons (oxygen = alcohol, ether, ester; nitrogen = amine, amide, sulfur = thiol or sulfide, etc.). Alcohols often lose water (M-18) and primary amines can lose ammonia (M-17).
3. Branch next to a carbonyl $(\mathrm{C}=\mathrm{O})$ bond... and possible subsequent loss of carbon monoxide, CO

R_{1} or R_{2} can be lost from aldehydes, ketones, acids, esters, amides...etc.

An oxygen lone pair partially fill in the loss of electrons at the carbocation site via resonance. This is a common fragmentation pattern for any carbonyl compound and can occur from either side, though some are more common than others.
subsequent loss of CO is possible after α fragmentation so not only can you see loss of an α branch you can see the mass of an α branch.

4. McLafferty Rearrangement

radical cation

still a radical cation

lost neutral fragment

Positive charge can be on either fragment, which typically have an even mass.

$$
\begin{aligned}
& \alpha=\text { alpha position } \\
& \beta=\text { beta position } \\
& \gamma=\text { gama position }
\end{aligned}
$$

This is another common fragmentation pattern for carbonyl compounds (and other pi systems as well: alkenes, aromatics, alkynes, nitriles, etc.). If the pi bond has at least 3 additional nonhydrogen atoms attached and a hydrogen on the "gama" atom, the branch can curve around to a comfortable 6 atom arrangement and the pi bond can pick up a hydrogen atom and cut off a fragment between the C_{α} and C_{β} positions. The positive charge can be seen on either fragment and usually the fragments have an even mass (unless there is an odd number of nitrogen atoms).

Knowing these few fragmentation patterns will allow you to make many useful predictions and interpretations. Loss of small molecules, via elimination is common: $\mathrm{H}_{2} \mathrm{O}=18, \mathrm{H}_{2} \mathrm{~S}=34, \mathrm{CH}_{3} \mathrm{OH}=32$, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=46, \mathrm{NH}_{3}=17, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}=62, \mathrm{HF}=20, \mathrm{HCl}=36 / 38, \mathrm{HBr}=80 / 82$, etc.

A sampling of unusual and/or miscellaneous peaks that are commonly seen, (even when they don't make sense).

Loss of small molecules via elimination reactions.

$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{2} \mathrm{~S}$	$\mathrm{CH}_{3} \mathrm{OH}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	NH_{3}	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	HF	HCl	HBr
mass $=18$	34	32	46	17	62	20	36	80

McLafferty Possibilities

Similar Patterns

$\begin{aligned} \text { mass }= & 42(\mathrm{R}=\mathrm{H}) \\ & 56\left(\mathrm{R}=\mathrm{CH}_{3}\right) \\ & 70\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{3}\right) \\ & 84\left(\mathrm{R}=\mathrm{C}_{3} \mathrm{H}_{7}\right)\end{aligned}$

$$
\begin{aligned}
\text { mass }= & 92(\mathrm{R}=\mathrm{H}) \\
& 106\left(\mathrm{R}=\mathrm{CH}_{3}\right) \\
& 120\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{3}\right) \\
& 134\left(\mathrm{R}=\mathrm{C}_{3} \mathrm{H}_{7}\right)
\end{aligned}
$$

$\begin{aligned} \text { mass }= & 40(\mathrm{R}=\mathrm{H}) \\ & 54\left(\mathrm{R}=\mathrm{CH}_{3}\right) \\ & 68\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{3}\right) \\ & 82\left(\mathrm{R}=\mathrm{C}_{3} \mathrm{H}_{7}\right)\end{aligned}$
mass $=41(\mathrm{R}=\mathrm{H})$
$55\left(\mathrm{R}=\mathrm{CH}_{3}\right)$ $69\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ $83\left(\mathrm{R}=\mathrm{C}_{3} \mathrm{H}_{7}\right)$

