Spectroscopy Data Tables Infrared Tables (short summary of common absorption frequencies)

The values given in the tables that follow are typical values. Specific bands may fall over a range of wavenumbers, cm⁻¹. Specific substituents may cause variations in absorption frequencies. Absorption intensities may be stronger or weaker than expected, often depending on dipole moments. Additional bands may confuse the interpretation. In very symmetrical compounds there may be fewer than the expected number of absorption bands (it is even possible that all bands of a functional group may disappear, i.e. a symmetrically substituted alkyne!). Infrared spectra are generally informative about what functional groups are present, but not always. The ¹H and ¹³C NMR's are often just as informative about functional groups, and sometimes even more so in this regard. Information obtained from one spectroscopic technique should be verified or expanded by consulting the other spectroscopic techniques.

IR Summary - All numerical values in the tables below are given in wavenumbers, cm⁻¹

Bonds to Carbon (stretching wave numbers)

Stronger dipoles produce more intense IR bands and weaker dipoles produce less intense IR bands (sometimes none).

Bonds to Hydrogen (stretching wave numbers)

Spectroscopy Data Tables Carbonyl Highlights (stretching wave numbers)

sp² C-H bend patterns for alkenes

sp² C-H bend patterns for aromatics

alkene substitution pattern	descriptive alkene term	absorption frequencies (cm ⁻¹) due to sp ² CH bend	aromatic substitution pattern	descriptive aromatic term	absorption frequencies (cm ⁻¹) due to sp^2 CH bend
	monosubstituted alkene	985-1000 900-920	×	monosubstituted aromatic	690-710 730-770
	cis disubstituted alkene	675-730 (broad)	×	ortho disubstituted aromatic	735-770
	trans disubstituted alkene	960-990	×		
	geminal disubstituted alkene	880-900	×x	meta disubstituted aromatic	680-725 750-810 880-900 (sometimes)
	trisubstituted alkene	790-840	xx	para disubstituted aromatic	790-840
R = C R	tetrasubstituted alkene	none	Aromatic compoun that show up betwee pictures for compa co	ds have characteristic v een 1650-2000 cm ⁻¹). S arison (not here). A str ver up most of this regi	weak overtone bands Some books provide ong C=O peak will on.

3

IR Flowchart to determine functional groups in a compound (all values in cm⁻¹).

does C=0	not have O band	
I	alkanos	
	sn ³ C-H stretch	2850-3000
	sp ³ C II hand	1460 & 1380
	sp ⁻ C-H bend	not useful
	alkenes	norusena
	sp ² C-H stretch	3000-3100
	sp ² C-H bend	650-1000 (see table for spectral patterns)
	c==c	1600-1660 weak or not present
	aromatics	
	sp ² C-H stretch	3050-3150
e	sp ² C-H bend	690-900 (see table), overtone patterns between 1660-2000
ides.	c==c	1600 & 1480 can be weak
,	alcohols	
ise)	alcohol	3600-3500
n	-11	1000-1260
n	C—O	$(3^{\circ} > 2^{\circ} > 1^{\circ})$
	thiols	- 2550 (week)
	thiol	≈ 2330 (weak) (easy to overlook)
	S—⊓ aminas	(0.0.2) 0.0 0.0000000
	$ \begin{array}{c} \begin{array}{c} H \\ \hline \\ 1^{\circ} \\ H \end{array} \\ \begin{array}{c} N \\ 2^{\circ} \end{array} \\ \begin{array}{c} H \\ 2^{\circ} \end{array} $	3300 - 3500, two bands for 1° amines, one band for 2° amines, weaker than in amides,
	N-H N stron	N-H bend, 1550-1640, ger in amides than amines
	NC	1000-1350 (uncertain)
	ethers	
	alkoxy C O	1120 (alphatic) 1040 & 1250 (aromatic)
	nitro compounds	
	N⊕ 1500- 1300- 0⊖	1600, asymmetric (strong) 1390, symmetric (medium)
er nd,	carbon-halogen bond	ls
	cx	usually not very useful
	X = F, Cl, Br, I	

deshielding side = less electron rich (inductive & resonance)

Calculation of chemical shifts for protons at sp³ carbons

Estimation of sp³ C-H chemical shifts with multiple substituent parameters for protons within 3 C's of consideration.

 α = directly attached substituent, use these values when the hydrogen and substituent are attached to the same carbon β = once removed substituent, use these values when the hydrogen and substituent are on adjacent (vicinal) carbons γ = twice removed substituent, use these values when the hydrogen and substituent have a 1,3 substitution pattern

X = substituent	α	β	γ	Starting value and equations for CH ₃ 's
R- (alkyl)	0.0	0.0	0.0	
$R_2C=CR-(alkenyl)$	0.8	0.2	0.1	$\delta CH_3 = 0.9 + \alpha H_3C - \alpha$
RCC- (alkynyl)	0.9	0.3	0.1	
Ar- (aromatic)	1.4	0.4	0.1	
F- (fluoro)	3.2	0.5	0.2	$\delta CH_3 = 0.9 + \Sigma(\beta + \gamma) \qquad H_2C - C_0 - C_{}$
<u>Cl- (chloro)</u>	2.2	0.5	0.2	$= 0^{-1}$ $= 0^{-1}$ $= 0^{-1}$
Br- (bromo)	2.1	0.7	0.2	
<u>I- (iodo)</u>	<u>2.0</u>	<u> </u>	<u>0.1</u> _	Σ is the summation symbol for all substituents considered
HO- (alcohol)	2.3	0.3	0.1	
RO- (ether)	2.1	0.3	0.1	Starting value and equation for CH ₂ 's
epoxide	1.5	0.4	0.1	Starting value and equation for CH2S
$R_2C=CRO-$ (alkenyl ether)	2.5	0.4	0.2	
ArO- (aromatic ether)	2.8	0.5	0.3	In a similar manner we can calculate chemical shifts
RCO ₂ - (ester, oxygen side)	2.8	0.5	0.1	for methylenes (CH_2) using the following formula
ArCO ₂ - (aromatic ester, oxygen side)	3.1	0.5	0.2	
ArSO ₃ - (aromatic sulfonate, oxygen)	2.8	0.4	0.0	$\delta CH_2 = 1.2 + \sum (\alpha + \beta + \gamma)$ H
H_2N - (amine nitrogen)	1.5	0.2	0.1	$H = C_0 = C_0 = C_0 = C_0$
RCONH- (amide nitrogen)	2.1	0.3	0.1_	$11 0_{\alpha} 0_{\beta} 0_{\gamma}$
O ₂ N- (nitro)	3.2	0.8	0.1	Σ is the summation symbol for all substituents considered
HS- (thiol, sulfur)	1.3	0.4	0.1l	2 is the summation symbol for an substituents considered
RS- (sulfide, sulfur)	1.3	0.4	0.1	Starting value and equation for CH's
OHC- (aldehyde)	1.1	0.4	0.1	
RCO- (ketone)	1.2	0.3	0.0	
ArCO- (aromatic ketone)	1.7	0.3	0.1	In a similar manner we can calculate chemical shifts for modeling (CII) using the following formula
HO ₂ C- (carboxylic acid)	1.1	0.3	0.1	for methines (CH) using the following formula
RO ₂ C- (ester, carbon side)	1.1	0.3	0.1	
H_2 NOC- (amide, carbon side)	1.0	0.3	0.1	$\delta CH = 1.5 + \Sigma(\alpha + \beta + \gamma) \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $
ClOC- (acid chloride)	1.8	0.4	0.1	$ \begin{bmatrix} \alpha & C_{\beta} & C_{\gamma} \\ & 1 & 1 \end{bmatrix} $
NC- (nitrile)	1.1	0.4	0.2	
RSO- (sulfoxide)	1.6	0.5	0.3	Σ is the summation symbol for all substituents considered
RSO ₂ - (sulfone)	1.8	0.5	0.3	

Calculations are generally close to actual chemical shifts for a single substituent, but are less reliable as the number of substituent factors goes up. Multiple substituent factors tend to overestimate an actual chemical shift.

d. methyl = $0.9 + (0.1)_{\alpha} = 1.0$ ppm actual = 1.0

e. methylene = $1.2 + (0.3)_{\alpha} = 1.5$ ppm actual = 1.7

f. methylene = $1.2. + (1.7)_{\alpha} = 2.9$ ppm actual = 2.9

a. methine = $1.5 + (1.4)_{\alpha} + (2.3)_{\alpha} + (0.2)_{\beta} = 5.4$ ppm actual = 5.2

b. methylene = $1.2 + (1.5)_{\alpha} + (0.4)_{\beta} + (0.3)_{\beta} = 3.4$ ppm actual = 3.0 and 3.2

c. methyl =
$$0.9 + (1.5)_{\alpha} = 2.4$$
 ppm
actual = 2.6

Estimated chemical shifts for protons at alkene sp² carbons

Substituent	$\alpha_{geminal}$	α_{cis}	α_{trans}
H-	0.0	0.0	0.0
Hydrogen			
R-	0.5	-0.2	-0.3
Alkyl			
C ₆ H ₅ CH ₂ -	0.7	-0.2	-0.2
Benzyl			
X-CH ₂ -	0.7	0.1	0.0
Halomethyl	0.6		
$(H)/ROCH_2$ -	0.6	0.0	0.0
alkoxymethyl			
$(H)_2/R_2NCH_2-$	0.6	-0.1	-0.1
aminomethyl			
RCOCH ₂ -	0.7	-0.1	-0.1
a-keto			
NCCH2-	0.7	-0.1	-0.1
neen	0.7	0.1	0.1
$\frac{\alpha - cyano}{D - cyano}$	1.0	0.0	0.0
$R_2C = CR$ -	1.2	0.0	0.0
Alkenyl			
С ₆ Н ₅ -	1.4	0.4	-0.1
Phenyl			
F-	1.5	-0.4	-1.0
Fluoro			
Cl-	1.1	0.2	0.1
Chloro		•	0.11
Br-	11	0.4	0.6
Bromo	1.1	0.1	0.0
I_	1.1	0.8	0.9
Iodo	1.1	0.0	0.7
PO	1.2	1 1	1.2
NO-	1.2	-1.1	-1.2
PCO	2.1	0.4	0.6
RCO ₂ -	2.1	-0.4	-0.0
<u>O-ester</u>	0.0	1.0	1.0
$(H)_2/R_2N-$	0.8	-1.3	-1.2
N-amino			
RCONH-	2.1	-0.6	-0.7
N-amide			
O_2N -	1.9	1.3	0.6
Nitro			
RS-	1.1	-0.3	-0.1
Thiol			
OHC-	1.0	1.0	1.2
Aldehvde			
ROC-	11	0.9	0.7
Ketone		0.5	0.17
HO ₂ C-	0.8	1.0	03
C acid	0.0	1.0.	05
PO-C	0.0	1.0	0.5
ко ₂ с-	0.8	1.0	0.5
<u>U-ester</u>	~ .	1.0	
H_2NOC-	0.4	1.0	0.5
C-amide			
NC-	0.3	0.8	0.6
Nitrile			

Example Calculation

Estimated chemical shifts for protons at aromatic sp² carbons

Substituent	α ortho	α meta	α para
H- Hvdrogen	0.0	0.0	0.0
CH ₃ -	-0.2	-0.1	-0.2
Methyl		•••-	
CICH2-	0.0	0.0	0.0
Cholromethyl	0.0	0.0	0.0
	0.6	0.1	0.1
Ualamathyl	0.0	0.1	0.1
	0.1	0.1	0.1
	-0.1	-0.1	-0.1
Hydroxymethyl	0.1	0.0	0.1
$R_2C=CR-$	0.1	0.0	-0.1
Alkenyl			
C ₆ H ₅ -	1.4	0.4	-0.1
Phenyl			
F-	-0.3	0.0	-0.2
Fluoro			
Cl-	0.0	0.0	-0.1
Chloro			
Br-	0.2	-0.1	0.0
Bromo	•	•••-	
I-	0.4	-0.2	0.9
Iodo	0.1	0.2	0.9
HO-	-0.6	-0.1	-0.5
Hydroxy	0.0	0.1	0.5
RO-	-0.5	-0.1	-0.4
Alkovy	0.5	0.1	0.1
RCO ₂ -	-0.3	0.0	-0.1
Q astar	-0.5	0.0	-0.1
$\frac{O-ester}{(II)}$	0.9	0.2	0.7
$(\Pi)_2/K_2N$ -	-0.8	-0.2	-0.7
N-amino	0.1	0.1	
RCONH-	0.1	-0.1	-0.3
N-amide			
O_2N -	1.0	0.3	0.4
Nitro			
RS-	-0.1	-0.1	-0.2
thiol/sulfide			
OHC-	0.6	0.2	0.3
Aldehyde			
ROC-	0.6	0.1	0.2
Ketone			
HO ₂ C-	0.9	0.2	0.3
C-acid			
RO ₂ C-	0.7	0.1	0.2
C-ester			
H ₂ NOC-	0.6	0.1	0.2
C-amide			÷.2
NC-	0.4	0.2	03
Nitrile	т.0	0.2	0.5

-H acid H = 10-13

δ (ppm)

Combinations or these are possible.

dd = doublet of doublets; ddd = doublet of doublet of doublets; ddd = doublet of doublet of doublets; dt = doublet of triplets td = triplet of doublets; etc.

	Range	Typical	,	Range	Typical
H _a	0-30 Hz	14 Hz	H_{a}	0-3 Hz	1 Hz
 H_b geminal protons - can have different of and split one another if they are dia 	chemical shift stereotopic	S	cis / allylic coupling, notice through 4 bonds		
	Range	Typical		Range	Typical
$- \overset{H_a}{\overset{H_b}{\overset{H}}{\overset{H_b}{\overset{H_b}{\overset{H}}{\overset{H_b}{\overset{H_b}{\overset{H}}{\overset{H_{h}}{\overset{H}}{\overset{H}}{\overset{H}}{\overset{H}}{\overset{H}}}}{\overset{H}}}}}}}}$	6-8 Hz	7 Hz	C = C	0-3 Hz	1 Hz
vicinal protons are on adjacent atoms, rotating coupling averages out to abo	when freely out 7 Hz		trans / allylic coupling, notice through 4 bonds		
0 = dihadral	Range	Typical		Range	Typical
$H_a H_b$ angle H_{\perp}	0-12 Hz	7 Hz		9-13 Hz	10 Hz
	depends o angle, see Karplus e	n dihedral plot of quation	H_a^2 H_b sp ² vicinal coupling (different π bonds)		
	Range	Typical		Range	Typical
$\begin{array}{c c} H_a & H_b \\ \hline C - C - C - C \\ \hline \end{array}$	0-1 Hz	0 Hz	-C - C	1-3 Hz	2 Hz
protons rarely couple through 4 chem unless in a special, rigid shapes (i.e. V	ical bonds V coupling)		sp ³ vicinal aldehyde coupling		
	Range	Typical		Range	<u>Typical</u>
$C = C_{H_b}^{H_a}$	0-3 Hz	2 Hz	$\begin{array}{c} H_{a} \\ C - C \\ - C \\ O \end{array}$	5-8 Hz	6 Hz
sp ² geminal coupling			sp ² vicinal aldehyde coupling		
	Range	Typical		Range	Typical
H _a H _b	5-11 Hz	10 Hz	$-C = C - H_{b}$	2-3 Hz	2 Hz
sp ² cis (acylic) coupling (always smaller than the trans isomer)			sp / propargylic coupling notice through 4 bonds		
H., /	Range	Typical		Range	Typical
	11-19 Hz	17 Hz	$ \begin{array}{c} H_{a} & H_{b} \\ -C = C - C \end{array} $	2-3 Hz	3 Hz
sp ² trans coupling (always larger than the cis isomer)			bis-propargylic coupling notice through 5 bonds		
\ Ha	<u>Range</u>	Typical	ortho, meta and> H	<u>Range</u>	Typical
	4-10 Hz	7 Hz	this proton	ortho 6-10 Hz meta 2-3 Hz para 0-1 Hz	9 Hz 2 Hz 0 Hz
sp ² / sp ³ vicinal coupling			H _{para}		

When J values are less than 1 Hz, it is often difficult to resolve them and a peak may merely appear wider and shorter.

Similar chemical shift information presented in a different format. Remember, proton decoupled carbons appear as singlets. When carbons are coupled to their hydrogens, carbons follow the N+1 rule. Methyls = q, methylenes = t, methines = d, and carbons without hydrogen appear as singlets = s. DEPT provides the same information. Carbon chemical shifts are spread out over a larger range than proton chemical shifts (they are more dispersed), so it is less likely that two different carbon shifts will fall on top of one another. The relative positions of various types of proton and carbon shifts have many parallel trends (shielded protons tend to be on shielded carbons, etc.)

Simple alkane	СН3—	CH ₂ —	—Сн—	
carbons	d ≈ 0 - 30 ppm (q)	$d \approx 20 - 40 \text{ ppm}$ (t)	$d \approx 30 - 50 \text{ ppn}$ (d)	$d \approx 30 - 60 \text{ ppm}$ (s)
sp ³ carbon	CH ₃ -O	CH ₂ -O	—сн–о	
next to oxygen	d ⋦ 50 - 60 ppm (q)	d झ 55 - 80 ppm (t)	$d \approx 60 - 80 \text{ ppn}$ (d)	n $d \approx 70 - 90 \text{ ppm}$ (s)
sp ³ carbon	CH3-N	CH ₂ -N	CHN	
next to nitrogen	d झ 10 - 50 ppm (q)	d ≒ 35 - 55 ppm (t)	d ≒ 50 - 70 ppr (d)	n d $\lesssim 50 - 70 \text{ ppm}$ (s)
sp ³ carbon next to bromine or chlorin (X = Cl, Br)	o ne d	CH_2-X $\approx 25 - 50 \text{ ppm}$ (t)	$-CH-X$ $ $ $d \approx 60 - 80 \text{ ppm}$ (d)	$- \bigvee_{c-X}^{l} d \approx 60 - 80 \text{ ppm}$ (s)
sp carbon (alky	$\begin{array}{ll} \text{nes}) &C \equiv C - \\ \delta \rightleftharpoons 70 - 90 \end{array}$	s	sp carbon (nitriles)	$C \equiv N$ $\delta \rightleftharpoons 110 - 125 \text{ ppm}$
sp ² carbon (alke and aromatics)	nes $\delta \approx 100 - 1$ simple sp ² resonance donation resonance withdrawa	H C - H 140 ppm carbon s moves δ lower, C l moves δ higher c	$\delta \approx 140 - 16$ p^2 carbon attached to a X = oxygen, nitrogen, onjugated with a carbo	C-X 0^+ ppm an electronegative atom halogen) or C _β carbon onyl group
$\delta \approx 160 - 1$ carboxyl ca (acids, ester (s)	80 ppm arbons s, amides)	δ झ 180 - 210 aldehyde carbons values when conj (d)	ppm & s, lower ke jugated val	$5 \iff 180 - 220 \text{ ppm}$ tone carbons, lower ues when conjugated (s)

Τ

Spectroscopy Data Tables <u>Calculations of alkane ¹³C chemical shifts not listed above.</u>

sp³ Carbon Chemical Shift Calculations

Calculations for sp³ carbon ¹³C chemical shifts of functionalized carbon skeletons can be performed starting from the actual shifts found in the corresponding alkane skeleton, and introducing corrections factors based on the functionality present in the molecule. This assumes that the alkane ¹³C shifts are available, which is why several examples are provided below.

Examples of C_n alkanes as possible starting points for calculation ¹³C shifts in ppm.

$$X \xrightarrow{\alpha}_{\beta} \gamma$$

$$R \xrightarrow{\alpha} \beta^{\gamma}$$

X is attached to a terminal carbon atom (ppm)			X is attached to an internal carbon atom (ppm)		
C_{α} correction	C_{β} correction	C_{γ} correction	C_{α} correction	C_{β} correction	C_{γ} correction
9	9	-2	6	8	-2
18	7	-2	9	6	-2
26	4	-2	14	3	-2
32	2	-2	20	1	-2
20	6	-1	15	5	-1
5	5	-4	2	6	-4
23	9	-2	17	7	-2
	X is attached to a C_{α} correction 9 18 26 32 20 5 23	X is attached to a terminal carbo C_{α} correction C_{β} correction9918726432220655239	X is attached to a terminal carbon tom (ppm) C_{α} correction C_{β} correction C_{γ} correction99-2187-2264-2322-2206-155-4239-2	X is attached to a terminal carbon atom (ppm)X is attached to C_{\alpha} correction C_{α} correction C_{β} correction C_{γ} correction C_{α} correction99-26187-29264-214322-220206-11555-42239-217	X is attached to a terminal carbon atom (ppm)X is attached to an internal carbon C_{α} correctionX is attached to an internal carbon C_{α} correction99-268187-296264-2143322-2201206-115555-426239-2177

	X is attached to	a terminal carbo	n atom (ppm)	X is attached to	an internal carb	on atom (ppm)
Substituent = X	C_{α} correction	C_{β} correction	C_{γ} correction	C_{α} correction	C_{β} correction	C_{γ} correction
——ОН	48	10	-6	44	7	-4
OR	60	7	-6	57	5	-6
O	51	6	-6	49	5	-6
NH ₂	28	10	-5	24	8	-5
NH(CH ₃)	38	8	-5	32	5	-4
N(CH ₃) ₂	45	5	-5	37	3	-4
	26	7	-5	21	5	-5
NO ₂	62	5	-5	58	2	-5

15						
	X is attached to	a terminal carbo	n atom (ppm)	X is attached to	an internal carb	oon atom (ppm)
Substituent = X	C_{α} correction	C_{β} correction	C_{γ} correction	C_{α} correction	C_{β} correction	C_{γ} correction
F	70	8	-7	67	5	-7
——CI	31	10	-5	36	8	-5
Br	20	10	-4	28	10	-4
I	-7	11	-2	7	11	-2
сн	30	0	-3	24	-1	-3
CCH ₃	31	1	-3	26	0	-3
С ОН	22	2	-3	18	1	-3

	X is attached to	a terminal carbo	n atom (ppm)	X is attached to	an internal carb	oon atom (ppm)
Substituent = X	C_{α} correction	C_{β} correction	C_{γ} correction	C_{α} correction	C_{β} correction	C_{γ} correction
с_осн3	20	2	-3	16	2	-3
C	25	3	-3	19	2	-3
—−C <u></u> N	3	3	-3	3	3	-3
	33	2	-3	30	2	-3
SH	11	10	-3	12	8	-3
SR	22	8	-3	20	6	-3

Additional starting point for calculating ¹³C chemical shifts (ppm) of substituted benzene rings (just a few possibilities)

Additional starting point for calculating ¹³C chemical shifts (ppm) of substituted alkenes (just a few possibilities)

-1

3

2

123 ppm starting point for alkene carbon

increments for directly attached carbon atoms

$\alpha = 11$	$\alpha' = -8$
$\beta = 5$	$\beta' = -2$
$\gamma = -2$	$\gamma' = 2$

 $\frac{steric \ corrections}{for \ each \ pair \ of \ cis-\alpha,\alpha} \ ' \ substituents$ for each pair of geminal- α , α substituents -5 for each pair of geminal- α, α 'substituents if one or more β substituents are present

$$\delta_{\rm C} = 123 \, \rm{ppm} + Z_{\rm i}$$

Effect of substituents on alkene ¹³C shifts (ppm)

Substituent	Zı	Za	Substituent	<u>Z</u> 1	<u>Z₂</u>
-H	0	0	-F	24	-34
-CH ₂	13	-7	-Cl	3	-6
-CH ₂ CH ₃	17	-10	-Br	-9	-1
-CH ₂ CH ₂ CH ₂	16	-9	-I	-38	7
-CH(CH ₂) ₂	23	-12	-OCH ₃	29	-39
-C(CH ₂) ₂	26	-15	-O ₂ CCH ₃	18	-27
-CH ₂ Cl	10	-6	-N(CH ₃) ₂	28	-32
-CH ₂ Br	11	-5	-NO ₂	22	-1
-CH ₂ I	14	-4	-CN	-15	14
-CH ₂ OH	14	-8	-SCH ₂ CH ₃	9	-13
-CH=CH2	14	-7	-CHO	15	14
-CCH	-6	6	-COCH ₃	14	5
-C/H	12	-11	-CO ₂ H	5	10
0.12	12		-COCI	8	14

Common fragmentation patterns in mass spectroscopy

1. Branch next to a π bond

Characteristic carboncation stability also applies. $3^{\circ} R^{\oplus} > 2^{\circ} R^{\oplus} > 1^{\circ} R^{\oplus} > CH_3^{\oplus}$

2. Branch next to an atom with a lone pair of electrons

radical cation

X lone pair electrons partially fill in loss of electrons at carbocation site via resonance. This is a common fragmentation for any atom that has a lone pair of electrons (oxygen = alcohol, ether, ester; nitrogen = amine, amide, sulfur = thiol or sulfide, etc.). Alcohols often lose water (M-18) and primary amines can lose ammonia (M-17).

3. Branch next to a carbonyl (C=O) bond...and possible subsequent loss of carbon monoxide, CO

loss of

 R_2^{\oplus}

 R_1^{\oplus}

 R_1 or R_2 can be lost from aldehydes, ketones, acids, esters, amides...etc.

An oxygen lone pair partially fill in the loss of electrons at the carbocation site via resonance. This is a common fragmentation pattern for any carbonyl compound and can occur from either side, though some are more common than others.

subsequent loss of CO is possible after α fragmentation so not only can you see loss of an α branch you can see the mass of an α branch.

McLafferty Rearrangement 4.

This is another common fragmentation pattern for carbonyl compounds (and other pi systems as well: alkenes, aromatics, alkynes, nitriles, etc.). If the pi bond has at least 3 additional nonhydrogen atoms attached and a hydrogen on the "gama" atom, the branch can curve around to a comfortable 6 atom arrangement and the pi bond can pick up a hydrogen atom and cut off a fragment between the C_{α} and C_{β} positions. The positive charge can be seen on either fragment and usually the fragments have an even mass (unless there is an odd number of nitrogen atoms).

Knowing these few fragmentation patterns will allow you to make many useful predictions and interpretations. Loss of small molecules, via elimination is common: $H_2O = 18$, $H_2S = 34$, $CH_3OH = 32$, $C_2H_5OH = 46$, $NH_3 = 17$, $CH_3CO_2H = 62$, HF = 20, HCl = 36/38, HBr = 80/82, etc.

Spectroscopy Data Tables 19 A sampling of unusual and/or miscellaneous peaks that are commonly seen, (even when they don't make sense). Ð $\operatorname{CH}_3^{\bigoplus} =$ $\begin{array}{c} CH_3 = 15\\ CH_3CH_2 = 29\\ C \Pi \oplus \end{array}$ $C_{3}H_{7}^{\oplus} = 43$ mass = 39 (R = H) $C_4H_9^{\oplus} = 57$ $53 (R = CH_3)$ $C_4 H_9^{\oplus} = 37$ $C_5 H_{11}^{\oplus} = 71$ $C_6 H_{13}^{\oplus} = 85$ mass = 41 (R = H)mass = 91 (R = H)67 (R=CH₂CH₃) mass = 65 (R = H) $55 (R = CH_3)$ $105 (R = CH_3)$ 79 ($R = CH_3$) also works for Ð $69 (R = CH_2CH_3)$ $119 (R = CH_2 CH_3)$ $93 (R = CH_2CH_3)$ R CH_2 ⊕ Ð Ð R OE H₂N=C=O Н Æ mass = 29 (R = H)mass = 44 $43 (R = CH_3)$ mass = 42 (R = H)⊕ $57 (R = CH_2 CH_3)$ $56 (R = CH_3)$ mass = 27RO=C=O 71 (R = C_3H_7) mass = 77 $70 (R = CH_2 CH_3)$ $105 (R = C_6 H_5)$ mass = 45 (R = H)59 ($R = CH_3$) $73 (R = CH_2 CH_3)$ Loss of small molecules via elimination reactions. H₂S CH₃OH C₂H₅OH NH₃ CH₃CO₂H HF HCl HBr H₂O 80 36 34 62 20 mass = 1832 46 17 82 38 McLafferty Possibilities Ð Æ McLafferty Notice! even masses R variable mass, mass = 44 (R = H)mass = 28 (R = H) $58 (R = CH_3)$ $42 (R = CH_3)$ (can sometimes see $72 (R = CH_2 CH_3)$ cation on this side too) 56 ($R = CH_2CH_3$) $86 (R = C_3 H_7)$ $70 (R = C_3 H_7)$

Similar Patterns R Ð Ð R_2 H_{2} R_2 R_2 R CH₂ ℃H₂ CH_2 mass = 42 (R = H)mass = 40 (R = H)mass = 41 (R = H)mass = 92 (R = H) $56 (R = CH_3)$ $54 (R = CH_3)$ 55 ($R = CH_3$) $106 (R = CH_3)$ 70 (R=CH₂CH₃) 68 (R=CH₂CH₃) 69 ($R = CH_2CH_3$) $120 (R = CH_2CH_3)$ 84 (R = C_3H_7) $82 (R = C_3 H_7)$ 83 (R = C_3H_7) $134 (R = C_3H_7)$