Reaction of trans-anethole with m-chloroperoxybenzoic acid (with buffer solution and without buffer solution)

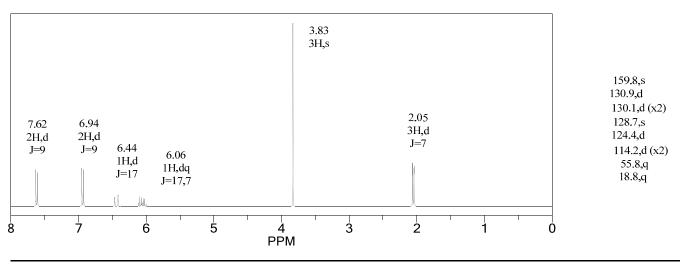
Procedure A (No Buffer)

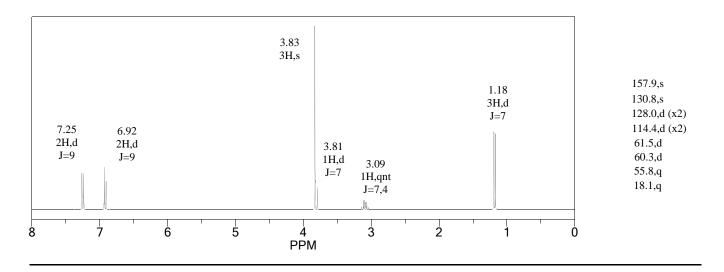
A solution of trans-anethole (0.50g, 3.4 mmol) in CH_2Cl_2 (10 ml) was efficiently stirred with a stir bar and cooled in an ice bath as a solution of mCPBA (0.92 g, 3.7 mmol) in CH_2Cl_2 (10 ml) was added dropwise via an addition funnel or a separatory funnel (if not available, use a 10 ml syringe and add through a vented septum). The resulting mixture was stirred in the ice bath for an additional 20 min. The mixture was washed with 10% Na₂CO₃ (5 X 15 ml) and saturated NaCl solution (15 ml).¹ The organic layer was dried (Na₂SO₄) and the solvent was <u>removed on a</u> rotary evaporator² to give 1.02 g of a viscous oil.

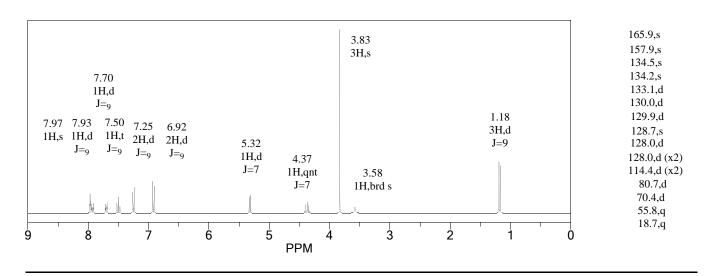
Procedure B (Buffered Reaction)

A biphasic mixture of a solution of trans-anethole (0.50g, 3.4 mmol) in CH_2Cl_2 (10 ml) and 10% Na_2CO_3 solution (10 ml) was efficiently stirred with a stir bar and well cooled in an ice bath as a solution of mCPBA (1.4 g, 5.7 mmol, 1.7 equiv) in CH_2Cl_2 (20 ml) was added dropwise via an addition funnel or a separatory funnel (if not available, use a 10 ml syringe and add through a vented septum). After the addition was complete, the mixture was stirred in the ice bath for an additional 20 min. The organic layer was separated and washed with 10% Na_2CO_3 (5 X 15 ml) and saturated NaCl solution (15 ml).¹ The organic layer was dried (Na_2SO_4) and the solvent was removed on a rotary evaporator² to give 0.52 g of a pleasant-smelling oil.

1. The excess peracid is removed by washing with 10% aqueous Na_2CO_3 . The absence of peracid can be tested using starch-iodide paper.


2. Solvent can also be removed using a water bath maintained at 50° C.


Hazards


Dichloromethane vapor is harmful and inhalation should be avoided. MCPBA is shock sensitive and should not be ground in a mortar. The epoxide product has a pleasant but persistent odor and hence contact with skin and clothing should be avoided.

Questions

- 1. What is the structure of mCPBA?
- 2. Interpret the proton NMR spectra for the starting material, product A and product B. Are there peaks for epoxide hydrogens in any of the ¹H NMR spectra?
- 3. How many aromatic carbons can be seen in the ¹³C NMR spectrum of starting material, A and B? Is this reasonable?
- 4. Are there any other carbons in the ¹³C spectra? If so, what are the likely functional groups on the basis of the chemical shift in the ¹³C NMR spectra?
- 5. What functional groups are indicated by the IR spectra (starting material, product A and product B)?
- 6. What is the theoretical yield of the product, assuming it is the epoxide? How does this compare to the observed yields? Explain any discrepancies (product A versus product B).
- 7. The pK_a of a peracid is about 8. How does this compare to the pK_a of benzoic acid (about 4)...to the pK_a of benzyl alcohol (about 16)? Are these reasonable values? Explain their differences.
- 8. Why are Na_2CO_3 extractions performed?
- 9. Propose what products are formed (A and B) and write mechanisms for each probable reaction. Explain any differences in reaction pathways.

2