Califomia State Polytechnic University, Pomona

Chem 316

You may use the cheat sheet you made for the midterm exam. You may take as much time as you want to do the exam. Please sign the following pledge.

I give my word that I did this exam completely on my own without help or consultation from any other person or using any other person's work. If I find that you received any help your score will be zero.

Signature (and print name) \qquad

1. Provide an acceptable name for the following structure. (30 pts)

2. Provide complete a rrow-pushing mechanisms for the reaction below (curved arrows, lone pairs of electrons and formal charge). Show resonance structures. (20 pts)

$+$

Califomia State Polytechnic University, Pomona

3. Provide the expected product for each of the following transformations. Show regiochemistry and stereochemistry clearly, if relevant. Do NOTshow mechanisms. (30 pts)
a.

4. SOCl_{2}
5. $\mathrm{CH}_{3} \mathrm{OH}$
6. Li
7. CuBr

g

h.

i.

j.

1

3. WK

2. WK

> 1. $\mathrm{n}-\mathrm{BuLi}$
> 2. $\xrightarrow{\mathrm{H}_{2} \mathrm{C}=} \mathrm{O}$

1. $\mathrm{Br}_{2} / \mathrm{H}_{2} \mathrm{O}$
2. NaOH
$\xrightarrow{\substack{\text { 1. } 2 \text { eqs. } \\ \mathrm{CH}_{3} \mathrm{Li} \\ \text { 2. } \mathrm{WK}}}$

$\mathrm{TsOH} /\left(-\mathrm{H}_{2} \mathrm{O}\right)$

CrO_{3} pyridine
3. Li
4. O

$$
\xrightarrow[\mathrm{RO}^{\ominus}]{\mathrm{H}_{2} \mathrm{~N}-\mathrm{NH}_{2}}
$$

$\xrightarrow{\text { 1. } \mathrm{BH}_{3}}$ 2. $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{HO}^{\ominus}$

1. LiAlH_{4}
2. WK

Califomia State Polytechnic University, Pomona

4. Propose a mechanism for the following tautomeric transformations. (30 pts)
a.

5. Propose a synthesis for the following compound using the given structures. You may also use any typical organic reagents. Show the reagents and reactant foreach backwardsstep until you reach a llowable starting molecules. Do not show mechanisms. (30 pts)

Califomia State Polytechnic University, Pomona

6. Make the following ketone using each of the following approaches. Work backwards (retrosynthetic thinking) and show each intemediate structure and each reagent until you reach an acceptable starting point. Acceptable starting points are the following structures and any routine reagents we have discussed in the course. Once a structure is made you can use it in other syntheses. Just referback to the part where it was made. Do not show mechanisms. (36 pts)

Allowed sources of carbon

Make the given ketone using:
a. a nitrile
b. a ketone
c. a cuprate
d. dithiane
e. an alcohol
f. ethyl acetoacetate (given)

Califomia State Polytechnic University, Pomona

7. From the given bio-organic structure, use our simplistic mechanisms to show how each transformation could occur. Use the descriptive term to fill in the necessary structures and details. Draw in any additional atoms orstructures needed to demonstrate the transformations (e.g. a hydrogen atom or a water molecule, any co-factors, etc.). Use B: if you need a base and $\mathbf{B}-\mathbf{H}^{\oplus}$ if you need an acid.
Acceptable representations of possible co-factors are provided below. (44 pts)
Simplified co-factors for the bio-organic game problems, if needed.

f.
react the TPP enamine with

reform the carbonyl group by using TPP as a leaving group
\qquad
h.
oxidize the the beta position to a ketone
decarboxylate
the beta keto-acid to a ketone
k.
do a forward Michael reaction to a 5 atom ring
 l. tautomerize to an aldehyde

$\xrightarrow{\text { m. }}$| make a 6 atom |
| :--- |
| hemi-acetal ring |

n.
make a acetal with ROH

Califomia State Polytechnic University, Pomona
a.

e.

b.

c.

g.

