Califomia State Polytechnic University, Pomona

Chem 316

Final Exam
Winter, 2008
Beauchamp
Name: \qquad

Topic	Total Points Exam Points	Credit
1. Nomenclature (1)	30	
2. Explanation of Relative Reactivities of Aromatic CompoundsorCarbonyl Compounds	20	
3. Reactions Page ($10 \times 3=30)$	30	
4. Tautomers (acidic conditions and base conditions)	30	
5. Aromatic Mechanism and Explanation of Substituent Effects	30	
6. C-14 Synthesis	25	
7. Bio-organic Game (reaction recognition/simplistic mechanisms)	52	
8. Carbonyl Chemistry - synthesis and mec ha nisms	30	
Total	245	

This is a long exam. It has been designed so that no one question will make or break you. The best strategy is to work steadily, starting with those problems you understand best. Make sure you show all of your work. Draw in any lone pairs of electrons, formal charge and curved a rrowsto show electron movement. Only write answers on the front of each page. Do your best to show me what you know in the time available.

Nothing in life is to be feared. It is only to be understood. Marie Curie

Califomia State Polytechnic University, Pomona

1. Provide an acceptable name for the following structure. (30 pts)

(2R,6R,10S,11R)-N-(3-phenylhept-3E-enyl)-2-amino-3-(4-hydroxycyclooct-5E-enyl)-6-(1-ethyl-3-methylbutoxy)-7,12-dioxo-8-(3-hydroxy-4-mercaptocyclohexyl)-9-formyl-10-cyano-11-benzyldodec-8Z-en-4-ynamide
2. State whether each of the following a romatic substituents acts asan activating ordeactivating group on the aromatic ring. Order the substituents in decreasing order of activating influence on the aromatic ring (1 = most activating). Show intermediate structures that will expla in your order of reactivity. Write out the reaction conditions for bromination and an expected major product in each case. (20 pts)

Califomia State Polytechnic University, Pomona

3. Provide the expected product foreach of the following transformations. Show regiochemistry and stereoc hemistry clearly, if relevant. Do NOTshow mechanisms. WK = workup. (30 pts)
a.

$\xrightarrow{\begin{array}{l}\mathrm{H}_{2} \mathrm{NNH}_{2} \\ \mathrm{RO}^{\ominus} / \Delta\end{array}}$

$\xrightarrow{\mathrm{HNO}_{3}}$| $\mathrm{H}_{2} \mathrm{SO}_{4} / / \Delta$ |
| :--- |

$\mathrm{H}_{2} \mathrm{SO}_{4} / / \Delta$
$\xrightarrow{\left(-\mathrm{H}_{2} \mathrm{O}\right)}$

1. LDA, $-78^{\circ} \mathrm{C}$
2. \sim_{Br}
3. WK

e.

4. $\mathrm{CH}_{3}-\mathrm{Li}$
$\xrightarrow{\text { 2. } \mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{H}_{2} \mathrm{O}}$

5. WK
$\xrightarrow{\mathrm{CrO}_{3} / \mathrm{H}_{2} \mathrm{O}}$

$\xrightarrow{\mathrm{Zn} / \mathrm{HCl}}$
6. $\mathrm{Ph}_{3} \mathrm{P}$
$\xrightarrow{\text { 2. }}$
$\xrightarrow{\mathrm{OsO}_{4}}$

7. LiAlH_{4}
$\xrightarrow{\text { 2. } \mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{H}_{2} \mathrm{O}}$
j.

Califomia State Polytechnic University, Pomona

Califomia State Polytechnic University, Pomona

4. Starting from benzene, propose a synthesis for each of the following molecules. (25 pts)
a. Synthetic targets - Propose a synthetic sequence that leads to each molecule. No mechanisms are required here. (4 pts)
i.

ii.

b. Provide mec ha nisms that show how any necessary electrophiles reacting with the a romatic ring a re generated. (6 pts)
i.
ii.

Califomia State Polytechnic University, Pomona

c. Provide a mechanistic explanation that explains the observed regioselectivity (ortho, meta or para) when the second group adds to the aromatic ring in each of your proposed syntheses in part a. (20 pts) i.
ii.

Califomia State Polytechnic University, Pomona

5. Provide a complete arrow-pushing mechanism for each reaction below. Include curved a rrows, lone pairs of electrons and fomal charge. If resonance is present, draw at least one additional resonance structure to show you recognize this feature, and one of them should be the "best" resonance structure. (35 pts-base $=15$ pts and acid $=20 \mathrm{pts}$)
a.

Califomia State Polytechnic University, Pomona

b.

Califomia State Polytechnic University, Pomona

6. Propose a synthesis for the following compound using methane, ethane, propane, cyclohexane, benzene, sodium cyanide and/orcarbon dioxide. Your only sources of radioactive ${ }^{14} \mathrm{C}$ carbon are methane, ${ }^{*} \mathrm{CH}_{4}$, carbon dioxide, ${ }^{*} \mathrm{CO}_{2}$ and sodium cyanide, $\mathrm{Na} * \mathrm{CN}$. You may also use any typic al organic reagents. Often the best strategy is to work backwards from the target molecule. The last step of the synthesis should be yourfirst step. Show the reagents and reactant foreach backwards step until you reach allowable starting molecules. Do not show mechanisms. (30 pts)

Califomia State Polytechnic University, Pomona

7. From the given bio-orga nic structure, use our simplistic mec ha nisms to show how each tra nsformation could occur. If any structures are missing, use the descriptive term to fill in the necessary structures and details. Draw in any additional atoms or structures needed to demonstrate the transformations (e.g. a hydrogen atom or a water molecule, any co-factors, etc.). Use B: if you need a base and $\mathbf{B}-\mathbf{H}^{\oplus}$ if you need an acid. Acceptable representations of possible co-factors are provided at the bottom of the last page. (50 pts) a.

c.

\qquad

Califomia State Polytechnic University, Pomona
d.

e.

f.

Califomia State Polytechnic University, Pomona

8. a. Provide the necessary starting materials and a complete a mrow pushing mechanism to explain formation of the indicated product (show propercurved a rrow conventions, lone pairs astwo dots and single electrons as one dot). You only need to show the most important resonance structure and $(\leftrightarrow \rightarrow$ Res.) whenever resonance is present. The necessary starting structures will be supplied for 3 points (12 pts)

b. Provide a detailed mechanism for the next step of the synthesis. You only need to show the most important resonance structure and ($\leftrightarrow \rightarrow$ Res.) whenever resonance is present. (8 pts)

Califomia State Polytechnic University, Pomona

c. Provide a detailed mechanism for the next step of the synthesis. You only need to show the most important resonance structure and ($\leftrightarrow \rightarrow$ Res.) whenever resonance is present. Indicate what products x and y are. (10 pts)

product y

Califomia State Polytechnic University, Pomona

9. Propose a complete a rrow pushing mechanism for the following reaction from the tetradotoxin synthesis. Hint: Make a hemi-acetal first, using the acid, and then do the usual JonesCrOs reaction. (15 pts)

$\xrightarrow{\substack{\text { Jones }}}$

Add in the methyl group at the appropriate position.

Simplified co-factors for the bio-organic game problems, if needed.

NAD^{+}
equivalent

NADH equivalent

TPP ylid

ATP

vitamin B-6 (1° amine version)

vitamin B-6 (aldehyde version)

Califomia State Polytechnic University, Pomona

No person is free who is not master of himself. Epictetus

Califomia State Polytechnic University, Pomona

a.

b.

SnCl_{2} $\xrightarrow{\mathrm{HCl}}$
$\xrightarrow[\mathrm{AlCl}_{3}]{\text { C-}}$

1. $\square \mathrm{Mg}-\mathrm{Br}$
2. WK
$\xrightarrow{\mathrm{H}_{3} \mathrm{O}^{\oplus} / \mathrm{H}_{2} \mathrm{O}}$
3. RO^{\ominus}

h.

i.

j.

4. PCC
5. $\mathrm{TsOH},\left(-\mathrm{H}_{2} \mathrm{O}\right)$
$\xrightarrow{\mathrm{HO}^{\sim}}$

$\xrightarrow{\mathrm{Br}_{2} / \mathrm{FeBr}_{3}}$

$$
\mathrm{Zn} / \mathrm{HCl}
$$

$$
\xrightarrow{\begin{array}{l}
\mathrm{CrO}_{3} \\
\mathrm{H}_{2} \mathrm{O} / \mathrm{H}_{3} \mathrm{O}^{+}
\end{array}}
$$

1. NaBH_{4}
$\xrightarrow{\text { 2. } \mathrm{WK}}$

$\xrightarrow{\mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}}$
