1. Find the highest priority group. These are listed in order of priority in the table of functional groups (next page).
2. Find the longest chain containing the highest priority group. You should know carbon chains of length $\mathrm{C}_{1}-\mathrm{C}_{19}$ (listed in the table).
3. Number the longest chain containing the highest priority group to give the highest priority group the lowest number possible in numbering the longest chain. For the first seven functional groups, the functional group carbon will be number 1 (if it is the highest priority group) and the " 1 " can be omitted, since it is understood that it has to be this way.
4. Usually the highest priority group is named as a suffix at the end of alkane, alk-\#-ene or alk-\#-yne. The final e is dropped if the suffix begins with a vowel and it is retained if the suffix begins with a consonant (only two for us, "nitrile" and "thiol"). A number will be present in front of the suffix name unless its position is unambiguously clear (e.g. carboxyl groups, aldehydes, nitriles, etc. always $=1$, if highest in priority). If there is a C/C pi functional group to identify (alkene or alkyne), the number in front of its part of the name describes its position (see rule 6 below). If both a pi bond and a high priority substituent are present, then two (or more) numbers may be necessary, one for each functionality.
5. Lower priority groups are named with their prefix names and their location numbers based on the numbering of the parent chain (always true for substituents numbered 12 on the next page). The lower priority substituents should be listed in alphabetical order. Some parts of prefix names count in this regard and some don't. We will not emphasize this aspect in this course.
6. Double bonds and triple bonds are named as alk-\#-ene or alk-\#-yne, respectively. If both are present, name as alk-\#-en-\#-yne. Multiple pi bonds (or other substituents) use the prefixes di, tri, tetra, penta etc. with a number for each occurrence. In such cases, an "a" is added in front of the numerical prefix for better phonetics. (alka-\#,\#-diene or alka-\#,\#,\#-triyne, alka-\#,\#-dien-\#,\#-diyne, etc.)

The essential functional groups to know (for our course) and their prefixes and suffixes are given in the next page. In this table the term "alkan-\#-suffix" is a generic term for any alkane with a functional group suffix, and it must be replaced with the correct parent stem name based on the number of carbons in the longest chain ($\mathrm{C}_{1}-\mathrm{C}_{19}$ for us). If there is a double bond, the name will change to "alk-\#-en-\#-suffix and if there is a triple bond, the name will change to "alk-\#-yn-\#-suffix.

Practice problems

alkanes, alkenes, alkyne, alka-\#,\#-dienes alka-\#,\#-diynes, alk-\#-en-\#-yne

Problems

b

c

e

f

g

h

i

j

Answers Alkene/alkyne priority: If tie, alkene > alkyne, otherwise lowest number at first point of difference.
a

f
b

c

d_{1}

e $\stackrel{1}{\underset{\sim}{\sim}} 2$
3
5
(7 / 8
8

octane

octa-1,6Z-diene oct-1-yne
oct-1-en-7-yne

oct-6E-en-1-yne
h

1 3-methyloct-1-en-7-yne

Functional group examples (high priority group gets suffix, all others named as prefixes)
sunctional group:

> functional group:
suffix:

name:
prefix:

prefix: alkoxycarbonyl

name: 2-methoxycarbonylpentanoic acid
functional group:
suffix:
prefix:

name:
functional group: acid chloride
functional group: amide $\left(1^{\circ}, 2^{\mathrm{o}}, 3^{\mathrm{o}}\right)$ suffix: -amide
functional group: nitrile
functional group:
suffix:
prefix:

name:
functional group:alcohol \quad suffix: -ol
name: 2S-hydroxy-2-methylbutanoic acid
functional group: \quad suffix:
name:

functional group:thiol | suffix: -thiol |
| :--- |
| retain "e", starts with a consonant |

functional group:amine
suffix: -amine

name: (3S)-hexane-3-amine (3S-hexylamine)

name: (3S)-N-ethylhexane-3-amine (3S--N-ethylhexylamine)
prefix: amino

name: (2S,3S)-2-amino-3-hydroxybutanoic acid

name: (2S,3R)-2-(N-ethylamino)-3-hydroxybutanoic acid
prefix:

name:
functional group: ether suffix: no suffix name prefix: alkoxy (depends on carbon part)
name: (2R,3R)-2-methoxy-3-aminobutanoic acid
prefix:

name:
functional group: thioether / sulfide

name: (3S)-propylthiohexane
prefix: alkylthio (depends on carbons)

Miscellaneous nitrogen functional groups (3 have formal charge, all named as prefixes)

Provide an acceptable name for the following compound. It has 'almost' all of our functional groups

2-ethylthio-3-(4-ethyl-5-nitroso-6-nitroheptyl)-4-amino-5-amido-6-phenyl-8-oxo-9-(3-pentyl-5-methoxycarbonyl-
6-formylcycloocta-2Z,4E-dienyl)-10-bromo-11-chlorocarbonylundeca-5E,9Z-dienyl 2-benzyl-3-azido-4-hydroxy-
5-(2-methylpropoxy)-6-cyano-7-(3-hexyl-4,4-dimethylcyclobut-2-enyl)-8-mercapto-9,12-dioxododec-5E-en-10-ynoate

Problem - Identify each of the substituent patterns below by its common name. Point out an example of a $1^{0}, 2^{0}, 3^{0}$ and 4° carbon atoms and1 ${ }^{\circ}, 2^{\circ}$ and 3° nitrogen atoms (amines) in the side chains. Also, point out an example of a methyl, methylene and methine (methylidene) position.

