Four Classes of Reactions (Substitution vs. Elimination and Bimolecular vs. Unimolecular)

There are many details to keep track of. Need to organize these details to develop a "best guess". Generally some of each competing reaction occurs (e.g. $S_N 2$ vs E2 or $S_N 1$ vs E1). Our presentation is greatly simplified, but necessary as a first look at organic reactions.

General guidelines for S_N/E reactivity of RX compounds, usually true (but not always)

- 1. Nucleophiles (Nu:) and bases (B:) both have a donatable pair of electrons (lone pairs and pi bonds). When donated to a proton the electron pair donor is called a base and when donated to anything else (usually carbon for us) the donor is called a nucleophile.
- 2. In our course we will divide electron pair donors into two groups. Strong donors will be symbolized with a negative charge (S_N2 and E2 reactions) and weak donors will be symbolized with neutral charge (S_N1 and E1 reactions). Mostly this will lead us to correct choices, even though our assumptions are somewhat simplistic. Exceptions are neutral nitrogen (ammonia and amines) and neutral sulfur (thiols and sulfides) are considered good electron pair donors.
- 3. Leaving groups become very stable anions or neutral molecules ($X = Cl^-$, Br^- , I^- , TsO^- , H_2O , ROH, ROR, etc.) when they take their electron pair away from R.
- 4. Both $S_N 2$ and E2 reactions are considered to be concerted, one-step reactions. They both require very specific orientations of the reactants for a successful reaction. $S_N 2$ reactions always occur by backside attack of the nucleophile and E2 reactions usually (always for us) occur with an anti conformation of the C_β -H/ C_α -X bonds.
- 5. Steric hindrance in either the RX electrophile or the electron pair donor slows S_N^2 reactions by interfering with the backside approach. Complete substitution at the C_{α} -X carbon (tertiary RX) or complete substitution at any C_{β} carbon (4° position) prevents S_N^2 reaction (no reaction). By default E2 reactions will become the only possible choice if an anti C_{β} -H/ C_{α} -X conformation can be attained.
- 6. All S_N^2 reactions occur from the backside and produce inversion of configuration ($R \rightarrow S \text{ or } S \rightarrow R$).
- 7. $S_N 2$ reactions are generally run in polar, aprotic solvents like DMSO (dimethylsulfoxide) or DMF (dimethylformamide), which only weakly solvate the nucleophile, but strongly solvate the counter cation.
- 8. All E2 reactions require and anti C_{β} -H and C_{α} -X conformation and the major alkene is usually the most substituted alkene. Alkoxide/alcohol mixtures are often used for E2 reactions.
- 9. CH_3 -X compounds only undergo S_N 2 reactions with strong base/nucleophiles and "No reaction" with weak nucleophiles.
- 10. Tertiary RX compounds only undergo E2 reactions with strong base/nucleophiles (no S_N 2 reaction).
- 11. The major product of primary RX with a strong base/nucleophile is usually $S_N 2$ with minor E2 product. The only exceptions are when extreme steric hindrance is present in the base or the RX compound. If potassium t-butoxide is the base/nucleophile, then E2 is the major product even with 1° RX compounds.
- 12. Secondary RX compounds have many choices. The major product of secondary RX with a strong base/nucleophile depends on the strength of the base. When two electron pair donors are similar (alkoxides vs carboxylates or cyanide vs terminal acetylides), the stronger base (higher pKa of conjugated acid) forms more E2 product and the weaker base (loser pKa) forms more S_N2 product. Examples from our course:
 - a. HO⁻ [pK_a(H₂O)=16] and RO⁻ [pK_a(ROH)=16] are more basic (generally $E2 > S_N2$ at $2^{\circ} RX$)
 - b. RCO_2^{-} [pK_a(RCO₂H)=5] is less basic (generally S_N2 > E2 at 2° RX).
 - c. RCC⁻ [pK_a(RCC-H)=25] is more basic (generally $E2 > S_N2$ at $2^{\circ} RX$)
 - d. NC⁻ [pK_a(NC-H)=9] is less basic (generally $S_N 2 > E2$ at $2^{\circ} RX$).

- S_N1 and E1 reactions always begin with the same first step: ionization of the R-X bond to form a carbocation, R+, and a stable leaving group (for us = Cl⁻, Br⁻, l⁻, TsO⁻, as anions or H₂O, ROH, RCO₂H as neutral molecules).
- 14. Methyl and primary RX compounds do not react under S_N1/E1 conditions (weak base/nucleophile) because they cannot form carbocations under usual reaction conditions (in our course).
- 15. $S_N 1$ usually out competes E1 reaction products and only occurs at 2° , 3° , allylic and benzilic RX compounds. Weak nucleophiles (H₂O, ROH, RCO₂H in our course) attack from both faces of the carbocation intermediate producing racemization of configuration, where observable, (in $S_N 1$ reactions). E1 products can occur from loss of any C_β -H rotated up or down with the empty 2p orbital.
- 16. $S_N 1/E1$ reactions require a very polar, ionizing solvent that allows formation of ions. Usually this is a protic, hydrogen bonding solvent that solvates both cations and anions. Often the solvent is also the nucleophile/base.
- 17. Carbocation rearrangements are competitive with S_N1 and E1 reactions when a similar or more stable carbocation can form ($3^\circ > 2^\circ >> 1^\circ >> CH_3$). We do not propose primary or methyl carbocations in our course.
- 18. E1 products are the major result when an alcohol (ROH) is mixed with sulfuric acid (H₂SO₄/ Δ) and heated to high temperatures. The E1 alkene product is more volatile and distills from the reaction mixture, shifting the equilibrium towards E1. Any C_β-H can be lost from either anti or syn conformations relative to the original C_α-X group and the major alkene is usually the most substituted alkene.
- 19. Neopentyl, vinyl and phenyl RX compounds generally do not react by any of these mechanisms. Vinylic and phenyl RX will undergo E2 reactions with very strong bases to form alkynes and benzyne, but do not react by S_N2, S_N1 or E1 reaction. We will not consider them reactive compounds in this topic.

These compounds are not usually reactive under S_N/E conditions. In our course, we will consider them unreactive.

C_{α} and C_{β} substitution patterns

methyl = (1R)-bromodeuteriotritiomethane

Fill in the necessary details from the names and predicte the expected products using the above electron pair donors.

S_N and E Reactions

Limited RX compounds for our course (open chains and cyclohexanes).

	X = Cl, Br, I	H ₃ C H ₃ C H D H ₂ C C H D IR,2R	$H_{3}C$ H_{2} $H_{$	H ₃ C C C C C C C C C C C C C C C C C C C
	H₃CX		IS,28	tortion: BV
Strong	metnyi KX	primary KX	SCOULALY KA	iertiary KA
base/nucleophiles $H \ddot{\Omega}^{\Theta} \cdot Na^{\Theta}$ $pK_a = 16$	only S _N 2 always inversion of configuration	$S_N 2 > E2$	E2 > S _N 2	only E2 requires anti $C_{\beta}H/C_{\alpha}X$ conformation
$R \ddot{O} : Na^{\bigoplus}$ $pK_a = 17$	only S _N 2	$S_N 2 > E2$	$E2 > S_N 2$	only E2
$H_{3}C$	only S _N 2	S _N 2 > E2	S _N 2 > E2	only E2
$H_{3}C \xrightarrow{CH_{3}} e \\ \downarrow e \\ C \xrightarrow{C} O \\ CH_{3} \\ K^{\oplus}$ sterically hindered and very basic $pK_{a} = 19$	only S _N 2	E2 > S _N 2	only E2	only E2
$RC = C:^{\Theta}$ $pK_a = 25 Na^{\bigoplus}$	only S _N 2	S _N 2 > E2	$E2 > S_N 2$	only E2
$: N = C: \Theta$ pK _a = 9 Na [⊕]	only S _N 2	S _N 2 > E2	S _N 2 > E2	only E2
$\begin{array}{c} \Theta & \oplus & \Theta \\ \vdots \underbrace{N \longrightarrow N} & & \underbrace{N \longrightarrow N} \\ azide & & \underbrace{Na} \end{array}$	only S _N 2	$S_N 2 > E2$	S _N 2 > E2	only E2
Weak base/nucleophiles $H \longrightarrow \ddot{O} \longrightarrow H$ $R \longrightarrow \ddot{O} \longrightarrow H$ $H_{3C} \longrightarrow H$	No reaction (R ⁺ cannot form)	No reaction (R ⁺ cannot form)	$S_N 1 > E1$ <u>Major reactions of R</u> ⁺ 1. add nucleophile from either face (S _N 1) 2. lose any C _β -H (E1) from either side 3. rearrange to new R ⁺ and start over	$eq:started_st$

Example 2 - two possible perspectives (deuterium is an isotope of hydrogen that can be distinguished)

S_N1, E1 and Carbocations

Resonance effects help stabilize carbocations and makes them easier to form.

Gas Phase Ionization Energies for R-Cl Bonds (kcal/mole, 1 kcal = 4.184 kJoule)

usually H-Nu: = H-B: = a protic solvent H-S: such as H_2O , ROH, RCO₂H.

usually H-Nu-H⁺ = H-B-H⁺ = a protonated solvent molecule H-S-H⁺ such as H_3O^+ , ROH_2^+ , $RC(OH)_2^+$

<u>S_N / E possibilities</u>

C₆H₁₃X isomers

C7H15X isomers

Other patterns – cyclohexyl, allyl, benzyl, vinyl, phenyl

Common reaction conditions (for S_N2, E2, S_N1, E1)