What kind of mechanisms are possible? What is the major mechanism occuring? Write in ALL mechanism details (lone pairs, formal charge, curved arrows, etc.). Redraw your structure each time you show a different reaction with the RX structure.
Mechanism choices at this point in organic chemistry: $\mathrm{S}_{\mathrm{N}} 2, \mathrm{E} 2, \mathrm{~S}_{\mathrm{N}} 1, \mathrm{E} 1$,acid/base reaction, free radical substitution, no reaction
Nuclephile/Bases (and other reagents) to choose from include:
purchase / given - you can invoke these whenever you need them

you have to make these using acid/base reactions

Synthesis of lithium diisopropyl amide, LDA, used to remove $\mathrm{C}_{\alpha}-\mathrm{H}$ proton of carbonyl groups. (acid / base reaction)

LDA $=$ lithium diisopropyl amide

Think - sterically bulky, very basic that goes after weakly acidic protons.

Make enolate (ketones and esters)

React ketone enolate with RX compounds (methyl, 1° and $2^{\circ} \mathrm{RX}$)

Make enolate (esters)

React ester enolate with RX compounds (methyl, 1° and 2° RX)

$\underline{S}_{\underline{N}}$ and E reactions

$\mathrm{S}_{\mathrm{N}} 2$ reactions $=$ substitution nucleophilic bimolecular

$$
\times 10^{\frac{-\mathrm{Ea}(\mathrm{SN} 2)}{2.3 \mathrm{xRxT}}}
$$

E 2 reactions $=$ elimination bimolecular $\quad \Theta \quad-\mathrm{Ea}(\mathrm{E} 2)$

$\mathrm{S}_{\mathrm{N}} 1$ reactions = substitution nucleophilic unimolecular
Rate $=\mathrm{k}_{\mathrm{SN} 1}[\mathrm{RX}]$ unimolecular kinetics, only RX participates in the slow step of the reaction; $\mathrm{k}_{\mathrm{SN} 1}=\mathrm{Ax} 10 \frac{-\mathrm{Ea}(\mathrm{SN1} 1)}{2.3 \times \mathrm{RxT}}$
E1 reactions $=$ elimination unimolecular
Rate $=k_{E 1}[R X]$ unimolecular kinetics, only RX participates in the slow step of the reaction; $k_{E 1}=A x 10 \frac{-\mathrm{Ea}(\mathrm{El})}{2.3 \times \mathrm{RxT}}$

$$
\underline{-\mathrm{Ea}(\mathrm{El})}
$$

Allowed starting structures - main sources of carbon
CH_{4}

$\longleftarrow \quad$ We cannot make these yet $\left(1^{\circ} \mathrm{RX}\right)$ so they are given.

These structures represent your starting points to synthesize target molecules below. You will need to propose a step-by-step synthesis for each target molecule from the given structures above. Every step needs to show a reaction arrow with the appropriate reagent(s) above each arrow and the major product of each step. The product of each step becomes the starting material for the next step until you reach the target structure. As new reagents are introduced this list will expand and as new reactions are learned the necessary hydrocarbons will contract.

R-X patterns - typical reaction patterns in our course (bold = atypical result)

Reagents	methyl RX	$1^{\circ} \mathrm{RX}$ primary	$\begin{gathered} 2^{\circ} \mathrm{RX} \\ \text { secondary } \end{gathered}$	$3^{\circ} \mathrm{RX}$ tertiary	$\begin{gathered} 1^{\circ} \text { neopentyl } \\ \text { RX } \end{gathered}$	allylic RX	benzylic RX
$\mathrm{Na}^{\oplus} \Theta^{\ominus} \mathrm{OH}$	only $\mathrm{S}_{\mathrm{N}} 2$	$\mathrm{S}_{\mathrm{N}} 2>\mathrm{E} 2$	E2 $>\mathrm{S}_{\mathrm{N}} 2$	only E2	no reaction	very fast $\mathrm{S}_{\mathrm{N}}{ }^{2}$	very fast $\mathrm{S}_{\mathrm{N}} 2$
$\mathrm{Na}^{\oplus} \Theta_{\text {OR }}$	only $\mathrm{S}_{\mathrm{N}} 2$	$\mathrm{S}_{\mathrm{N}} 2>\mathrm{E} 2$	$\mathrm{E} 2>\mathrm{S}_{\mathrm{N}} 2$	only E2	no reaction	very fast $\mathrm{S}_{\mathrm{N}} 2$	very fast $\mathrm{S}_{\mathrm{N}} 2$
$\mathrm{Na}^{\oplus} \ominus \mathrm{O}_{2} \mathrm{CR}$	only $\mathrm{S}_{\mathrm{N}} 2$	$\mathrm{S}_{\mathrm{N}} 2>\mathrm{E} 2$	$\mathrm{S}_{\mathrm{N}} 2>\mathrm{E} 2$	only E2	no reaction	very fast $\mathrm{S}_{\mathrm{N}} 2$	very fast $\mathrm{S}_{\mathrm{N}} 2$
$\mathrm{K}^{\oplus} \quad{ }_{\substack{\mathrm{O}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \\ \text { t-butoxide }}}$	only $\mathrm{S}_{\mathrm{N}} 2$	$\mathrm{E} 2>\mathrm{S}_{\mathrm{N}} 2$	only E2	only E2	no reaction	very fast $\mathrm{S}_{\mathrm{N}} 2$	very fast $\mathrm{S}_{\mathrm{N}} 2$
$\mathrm{Na}^{\oplus} \Theta \mathrm{C} \equiv \mathrm{~N}$	only $\mathrm{S}_{\mathrm{N}} 2$	$\mathrm{S}_{\mathrm{N}} 2>\mathrm{E} 2$	$\mathrm{S}_{\mathrm{N}} 2>\mathrm{E} 2$	only E2	no reaction	very fast $\mathrm{S}_{\mathrm{N}} 2$	very fast $\mathrm{S}_{\mathrm{N}} 2$
$\mathrm{Na}^{\oplus}{ }^{\ominus} \mathrm{C} \equiv \mathrm{C}-\mathrm{R}$	only $\mathrm{S}_{\mathrm{N}} 2$	$\mathrm{S}_{\mathrm{N}} 2>\mathrm{E} 2$	$\mathrm{E} 2>\mathrm{S}_{\mathrm{N}} 2$	only E2	no reaction	very fast $\mathrm{S}_{\mathrm{N}} 2$	very fast $\mathrm{S}_{\mathrm{N}} 2$
$\mathrm{Na}^{\oplus}{ }^{\ominus} \mathrm{N}_{3}$	only $\mathrm{S}_{\mathrm{N}} 2$	$\mathrm{S}_{\mathrm{N}} 2>\mathrm{E} 2$	$\mathrm{S}_{\mathrm{N}} 2>\mathrm{E} 2$	only E2	no reaction	very fast $\mathrm{S}_{\mathrm{N}} 2$	very fast $\mathrm{S}_{\mathrm{N}} 2$
$\mathrm{Na}^{\oplus} \Theta_{\mathrm{SH}}$	only $\mathrm{S}_{\mathrm{N}} 2$	$\mathrm{S}_{\mathrm{N}} 2>\mathrm{E} 2$	$\mathrm{S}_{\mathrm{N}} 2>\mathrm{E} 2$	only E2	no reaction	very fast $\mathrm{S}_{\mathrm{N}} 2$	very fast $\mathrm{S}_{\mathrm{N}} 2$
$\mathrm{Na}^{\oplus} \Theta_{\text {SR }}$	only $\mathrm{S}_{\mathrm{N}} 2$	$\mathrm{S}_{\mathrm{N}} 2>\mathrm{E} 2$	$\mathrm{S}_{\mathrm{N}} 2>\mathrm{E} 2$	only E2	no reaction	very fast $\mathrm{S}_{\mathrm{N}} 2$	very fast $\mathrm{S}_{\mathrm{N}} 2$
$\mathrm{Na}^{\oplus} \mathrm{H}-\stackrel{\ominus}{\mathrm{BH}_{3}}$	only $\mathrm{S}_{\mathrm{N}} 2$	$\mathrm{S}_{\mathrm{N}} 2>\mathrm{E} 2$	$\mathrm{S}_{\mathrm{N}} 2>\mathrm{E} 2$	only E2	no reaction	very fast $\mathrm{S}_{\mathrm{N}} 2$	very fast $\mathrm{S}_{\mathrm{N}} 2$
$\mathrm{Na}^{\oplus} \mathrm{D}-\stackrel{\ominus}{\mathrm{BD}_{3}}$	only $\mathrm{S}_{\mathrm{N}} 2$	$\mathrm{S}_{\mathrm{N}} 2>\mathrm{E} 2$	$\mathrm{S}_{\mathrm{N}} 2>\mathrm{E} 2$	only E2	no reaction	very fast $\mathrm{S}_{\mathrm{N}}{ }^{2}$	very fast $\mathrm{S}_{\mathrm{N}} 2$
$\mathrm{Li}^{\oplus} \mathrm{H}-\stackrel{\mathrm{AlH}}{3}$	only $\mathrm{S}_{\mathrm{N}} 2$	$\mathrm{S}_{\mathrm{N}} 2>\mathrm{E} 2$	$\mathrm{S}_{\mathrm{N}} 2>\mathrm{E} 2$	only E2	no reaction	very fast $\mathrm{S}_{\mathrm{N}} 2$	very fast $\mathrm{S}_{\mathrm{N}} 2$
$\mathrm{Li}^{\oplus} \mathrm{D}-\stackrel{\ominus}{\mathrm{AlD}_{3}}$	only $\mathrm{S}_{\mathrm{N}} 2$	$\mathrm{S}_{\mathrm{N}} 2>\mathrm{E} 2$	$\mathrm{S}_{\mathrm{N}} 2>\mathrm{E} 2$	only E2	no reaction	very fast $\mathrm{S}_{\mathrm{N}} 2$	very fast $\mathrm{S}_{\mathrm{N}} 2$

ketone enolates
R

The following are synthetic approaches to some target molecules using S_{N} and E reactions. They are presented as examples of how you might approach synthesis problems (these and others like them). You need to not only look at structures that I included below but think about other possibilities using all of the structures available to you. I do not list every possibility, but you need to be able to consider every possibility. The best strategy is to work backwards from the target molecule one step at a time to an allowed starting structure (called retrosynthetic analysis). That way you are only thinking about "one" backward step at a time, instead of an "unknown" number of steps forward from a starting structure. This is the way I presented the approaches below. You should also know the mechanism for every reaction below. I can write these pages until I am blue in the face, but they can't help you learn, unless you do the work of trying them out. My job is to give you an opportunity to learn, and your job is to take advantage of that opportunity. These schemes were made quickly, so be on the lookout for mistakes. (I hope not too many.)

1. Free radical substitution at $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$

Z:\ filest classes $314 \backslash 314$ Special Handouts 314 SN \& E Fall 2011.doc

Free radical substitution mechanism: 1. initiation 2 a and 2 b . propagation 3. termination. $\Delta \mathrm{H}$ of each step is controlled by relative bond energies ($\mathrm{R}-\mathrm{H}+\mathrm{Br}_{2}+$ light)
Sample $\mathrm{R}-\mathrm{Br}$ from $\mathrm{R}-\mathrm{H}$ using $\mathrm{Br}_{2} / \mathrm{h}$
2. alcohol synthesis

Sample alcohols - $\mathrm{S}_{\mathrm{N}} 2$ reactions using $\left(\mathrm{R}-\mathrm{X}+\mathrm{HO}^{\ominus}\right)$ or $\mathrm{S}_{\mathrm{N}} 1$ reactions using ($\mathrm{R}-\mathrm{X}+\mathrm{H}_{2} \mathrm{O}$)

alcohols - various approaches, $\mathrm{S}_{\mathrm{N}} 2$ at methyl and primary RX using NaOH and $\mathrm{S}_{\mathrm{N}} 1$ at secondary and tertiary RX using $\mathrm{H}_{2} \mathrm{O}$

(
aqueous hydroxide \rightarrow introduces a new alcohol functional group (R-OH)

3. ether synthesis

Sample ethers - $\mathrm{S}_{\mathrm{N}} 2$ reactions using $\left(\mathrm{R}-\mathrm{X}+\mathrm{RO}^{\ominus}\right.$) or $\mathrm{S}_{\mathrm{N}} 1$ reactions using ($\mathrm{R}-\mathrm{X}+\mathrm{ROH}$)

ethers - various approaches, $\mathrm{S}_{\mathrm{N}} 2$ at methyl and primary RX using NaOR and $\mathrm{S}_{\mathrm{N}} 1$ at secondary and tertiary RX using ROH

alkoxide \rightarrow introduces a new ether group (R-OR')

nucleophile $=$?
electrophile $=$?

4. ester synthesis (and one ketone example using enolates)

Sample esters - $\mathrm{S}_{\mathrm{N}} 2$ reactions using ($\mathrm{R}-\mathrm{X}+\mathrm{RCO}_{2}{ }^{\ominus}$) or $\mathrm{S}_{\mathrm{N}} 1$ reactions using ($\mathrm{R}-\mathrm{X}+\mathrm{RCO}_{2} \mathrm{H}$)

esters - various approaches, $\mathrm{S}_{\mathrm{N}} 2$ at methyl and primary RX using $\mathrm{RCO}_{2} \mathrm{Na}$ and $\mathrm{S}_{\mathrm{N}} 1$ at secondary and tertiary RX using $\mathrm{RCO}_{2} \mathrm{H}$

Carboxylates are OK nucleophiles at methyl, $1^{\circ} \mathrm{RX}$ and $2^{\circ} \mathrm{RX}$ but only E2 at 3° RX.

$\mathrm{S}_{\mathrm{N}} 1>\mathrm{E} 1$

ketone enolates (good nucleophiles at epoxides, carbonyls and $\mathrm{CH}_{3} \mathrm{X}, 1^{\circ} \mathrm{RX}$ and $2^{\circ} \mathrm{RX}$) \rightarrow bigger ketones

5. azide synthesis (these can be made into primary amines via $1 . \mathrm{LiAlH}_{4}$ 2. workup)

Sample azides - $\mathrm{S}_{\mathrm{N}} 2$ reactions using $\left(\mathrm{R}-\mathrm{X}+\mathrm{N}_{3}{ }^{\ominus}\right.$)

Θ

6. amine synthesis (at this point primary amines are made from azido compounds via $1 . \mathrm{LiAlH}_{4}$ 2. workup)

7. alkene synthesis (via E2 reactions, one time)

Sample alkenes using E2 reactions: R-X + t-butoxide; alkenes can make allylic R-X compounds

8. alkyne synthesis (via E2 reactions, two times)

Sample alkynes using double E2 reactions of 1. $\mathrm{RBr} 2+\mathrm{NaNR}_{2}$ 2. workup

alkynes (use two leaving groups)
(2 equivalents)

Sample alkynes using $\mathrm{S}_{\mathrm{N}} 2$ reactions of 1. terminal alkyne $+\mathrm{NaNR}_{2}$ 2. methyl or primary R-X (twice with ethyne)

Starting alkynes (2C and 3C)

2.

terminal acetylides \rightarrow larger alkynes

9. nitrile synthesis (via $\mathrm{S}_{\mathrm{N}} 2$ reaction)

nitriles

allowed

Cyanides are OK nucleophiles at methyl, $1^{\circ} \mathrm{RX}$ and $2^{\circ} \mathrm{RX}$ but only E2 at 3° RX.

cyanide \rightarrow nitriles

	$\xrightarrow[\mathrm{S}_{\mathrm{N}} 2]{ }$	$: \mathrm{N} \equiv \mathrm{C}-\mathrm{CH}_{3}$	$\begin{aligned} & \mathrm{Na}^{\oplus} \\ & : \ddot{\mathrm{Br}}: \\ & \stackrel{\ominus}{:} \end{aligned}$
	$\xrightarrow[\mathrm{S}_{\mathrm{N}} 2]{ }$		$\begin{aligned} & \mathrm{Na}^{\oplus} \\ & \quad: \stackrel{.}{\mathrm{Br}}: \end{aligned}$
	$\xrightarrow[\mathrm{S}_{\mathrm{N}} 2]{ }$		$\begin{gathered} \mathrm{Na}^{\oplus} \\ -\mathrm{CH}_{3} \quad: \stackrel{.}{\mathrm{Br}}: \end{gathered}$

10. thiols and sulfides synthesis (via $\mathrm{S}_{\mathrm{N}} 2$ reaction)

Sample sulifides using $\mathrm{S}_{\mathrm{N}} 2$ reactions of $\mathrm{RS}^{\ominus}+$ methyl, primary or secondary R-X
 thiols and sulfides
Sulfide
11. introducing hydride or deuteride into organic molecules (via $\mathrm{S}_{\mathrm{N}} 2$ reaction)

Sample deuterium added using $\mathrm{S}_{\mathrm{N}} 2$ reactions of LiAlD_{4} or $\mathrm{NaBD}_{4}+$ methyl, primary or secondary R-X

lithium aluminium hydride $\left(\mathrm{LiAlH}_{4}\right)$ and sodium borohydride $\left(\mathrm{NaBH}_{4}\right)=$ nucleophilic hydride (using "deuteride" shows where the "hydrogen" goes)

Mechanisms Worksheet

You need to be able to write your own mechanism from starting structures. I suggest you should practice using the nucleophiles from the list with the various RX compounds listed above. Writing mechanisms for each possibility would give you more than enough practice to learn the mechanism. Common mistakes include lone pairs, formal charge, curved arrows, correct Lewis structures, correct products predicted. This stuff takes practice - AND correcting your mistakes. I have set up the following worksheet to give you templates to fill in so that you can use them multiple times by copying the basic framework and then filling in the details. If you don't practice, you will be taking 314 again - and you don't want to do that. DO THE WORK!

$\underline{S}_{\underline{N}} 2$ then E2 examples first, followed by $\mathrm{S}_{\mathrm{N}} 1$ and E1 reactions

Example $1-\mathrm{CH}_{3}-\mathrm{X}$ (deuterium - D , and tritium $=\mathrm{T}$ are isotopes of hydrogen that can be distinguished from H) The only possible choice is $\mathrm{S}_{\mathrm{N}} 2$. Methyl R^{+}is too high energy for solution chemistry, so no $\mathrm{S}_{\mathrm{N}} 1 / \mathrm{R} 1$.

Example 1- $\mathrm{CH}_{3}-\mathrm{X}$

Example 2 - primary RX (deuterium is an isotope of hydrogen that can be distinguished from H)

Example 3 - secondary RX (deuterium is an isotope of hydrogen that can be distinguished from H)

other secondary RX to consider.

| Mechanism predictions with: |
| :---: | :---: | :---: |
| $\mathrm{H}-\mathrm{O}-\mathrm{H}$ |$\quad \mathrm{R}-\mathrm{O}-\mathrm{H} \quad$| Usually $\mathrm{S}_{\mathrm{N}} 1>\mathrm{E} 1$ |
| :---: |

Example 4 - tertiary RX (deuterium is an isotope of hydrogen that can be distinguished)

(2R,3R,4S)-2-deuterio-4-methyl-3-bromohexane
other tertiary RX to consider.

Mechanism predictions with:

$$
\mathrm{H}-\mathrm{O}-\mathrm{H}
$$

Usually $\mathrm{S}_{\mathrm{N}} 1>\mathrm{E} 1$
(except $\mathrm{ROH}+\mathrm{H}_{2} \mathrm{SO}_{4} /$ D.)

Example 5 - cyclohexane structures to consider (X must be axial to react by $\mathrm{S}_{\mathrm{N}} 2$ and E 2) (X can be axial or equatorial to react by $\mathrm{S}_{\mathrm{N}} 1$ and E1). Essential details can be filled in on the following templates.

cyclohexane
without branches without branches

Many substitution patterns are possible.
a

b

c

d

e

g シ E h

j

Mechanism predictions with:
Some examples

$$
\mathrm{H}-\mathrm{O}^{\ominus} \mathrm{Na}^{\oplus} \quad \mathrm{R}-\mathrm{O}^{\ominus} \mathrm{Na}^{\oplus}
$$

weak nucleophiles
$\mathrm{H}-\mathrm{O}$

strong nucleophile/bases + other anions shown above

S_{N} chemistry with enolates (mechanisms)

Synthesis of lithium diisopropyl amide, LDA. (acid / base reaction)

LDA $=$ lithium diisopropyl amide
 weakly acidic protons.

Make enolate (ketones and esters)

React enolate with RX compounds (methyl, 1° and 2° RX)

Synthesis of alkoxide nucleophiles with sodium hydride. (acid / base reaction)

React alkoxides with RX compounds (methyl and $1^{\circ} \mathrm{S}_{\mathrm{N}} 2$ favored, 2° and $3^{\circ} \mathrm{RX}$ E2 favored)

Synthesis of ethanoate (acetate) nucleophile with sodium hydroxide. (acid / base reaction)

React carboxylates with RX compounds ($\mathrm{S}_{\mathrm{N}} 2$ at methyl, 1° and $2^{\circ} \mathrm{RX}$ and E2 at $3^{\circ} \mathrm{RX}$)

esters

Simple Examples - general patterns (this is as easy as it gets, more complicated examples follow)
(base

$\mathrm{S}_{\mathrm{N}} 1 /$ E1 possibilities -extra complications at C_{β} positions, $2^{\circ} \mathrm{RX}$, rearrangements NOT considered $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{ROH}, \mathrm{RCO}_{2} \mathrm{H}\right)$

$\mathrm{S}_{\mathrm{N}} 1$ product (a. add from top and b . add from bottom)

$\mathrm{S}_{\mathrm{N}} 1 / \mathrm{E} 1$ possibilities -extra complications at C_{β} positions, $2^{\circ} \mathrm{RX}$, rearrangements NOT considered, with deuterium (makes it a little harder)

Examples of weak nucleophile/bases
a

water
b

c

E1 product from left C_{β} carbon atom

(2S,4S)

1
(2S,4S)

(4S)

4S,2Z-alkene with "D"
4S,2E-alkene without "D"

4S,2Z-alkene without "D"
(4S)

4S,2E-alkene with "D"

Redrawn from above (2S,4S)

E1 product from right $\mathrm{C}_{\boldsymbol{\beta}}$ carbon atom

2S,3E-alkene with "D"

ψ

"D" parallel to
empty 2 p orbital on top

2S,3Z-alkene with "D"

2S,3Z-alkene without "D"
(2S,4S)

> "D" parallel to empty 2 p orbital on bottom

$S_{N} 1 / E 1$ possibilities -extra complications at C_{β} positions of $2^{\circ} R X$, rearrangement to more stable $3^{\circ} R^{+}$considered

$E 1$ product from left C_{β} carbon atom (without rearrangement)

E1 product from right C_{β} carbon atom (without rearrangement)

"H" parallel to empty 2 p orbital on bottom

$\mathrm{S}_{\mathbf{N}} 1$ product (a. add from top and b. add from bottom), (without rearrangement)

After rearrangement to 3° carbocation $\left(\mathrm{R}^{+}\right)$- We will skip rearrangements in Chem 314

Redrawn (achiral)
E1 products from left $\mathrm{C}_{\boldsymbol{\beta}}$ carbon atom (top and bottom, after rearrangement)

E1 product from right $\mathrm{C}_{\boldsymbol{\beta}}$ carbon atom (top and bottom, after rearrangement)

E1 product from methyl $\mathrm{C}_{\boldsymbol{\beta}}$ carbon atom (top and bottom, after rearrangement, only one product from the methyl)

" H " parallel to empty 2 p orbital on top and bottom of right C_{β} position

$\mathrm{S}_{\mathrm{N}} \mathbf{1}$ product (a. add from top and b . add from bottom), (after rearrangement)

Homework problems: The number of each type of product (SN1, E1, SN2, E2) is listed after a reaction arrow for each starting structure (assuming I analyzed the possibilities accurately in my head, while sitting at the computer). See if you can generate those products using a valid mechanism for each one.

	$\underset{\sim}{5}$	

When methyl on $\mathrm{C}_{\beta} 1$ is anti to $\mathrm{C}-\mathrm{Br}$, no $\mathrm{S}_{\mathrm{N}} 2$ is possible and no E 2 is possible from $\mathrm{C}_{\beta} 1$.

No $\mathrm{S}_{\mathrm{N}} 2$ possible and no E2 from $C_{\beta 1}$, but E2 from $\mathrm{C}_{\beta 2}$ (1-butene) is possible.

Rotation of $\mathrm{C}_{\alpha}-\mathrm{C}_{\beta 1}$ brings H_{a} or H_{b} anti to $\mathrm{C}-\mathrm{Br}$, which allows $\mathrm{S}_{\mathrm{N}} 2$ and two different E2 possibilities: $\mathrm{H}_{\mathrm{a}}(\mathrm{Z})$ and $\mathrm{H}_{\mathrm{b}}(\mathrm{E})$. Since $\mathrm{C}_{\beta 2}$ is a simple methyl, there is no $\mathrm{C}_{\beta 2}$ substituent to inhibit either of these reactions.
alkene stabilities \Rightarrow tetrasubstituted $>$ trisubstituted $>$ trans-disubstituted $>$ gem-disubstituted \approx cis-disubstituted $>$ monosubstituted
Use these ideas to understand cyclohexane reactivity.

No $\mathrm{S}_{\mathrm{N}} 2$ or E2 when " X " is in equatorial position.

No $\mathrm{S}_{\mathrm{N}} 2$ is possible (1,3 diaxial positions block approach of nucleophile), and no E2 is possible because ring carbons are anti.
only partial rotation is possible in ring
$\mathrm{S}_{\mathrm{N}} 2$ possible
E 2 from $\mathrm{C}_{\beta 1}$ (2Z- butene)
E 2 from $\mathrm{C}_{\beta 2}$ (1-butene)
full rotation at $\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}$ is possible in chain

\rightleftharpoons N_{2} possible if C_{α} is not tertiary and there

No $\mathrm{S}_{\mathrm{N}} 2$ is possible (1,3 diaxial positions block approach of

No $\mathrm{S}_{\mathrm{N}} 2$ or E2 when "X" is in equatorial position.
only partial rotation is possible in ring possible because ring carbons are anti.

No E2 possible,
No $\mathrm{S}_{\mathrm{N}} 2$ possible if there no anti $\mathrm{C}_{\beta}-\mathrm{H}$. is an anti C_{β} " R " group.

Only E2 is possible in this conformation. Leaving group is in axial position.

t-butyl substituent locks in chair conformation with equatorial t-butyl

Cyclohexane structures
have two chair conformations possible.

$$
\begin{gathered}
\rightleftharpoons \\
\mathrm{K}_{\mathrm{eq}} \approx \frac{1}{9,999}
\end{gathered}
$$

 severe steric
repulsion repulsion

Examples - group \mathbf{A}

1. Is $\mathrm{S}_{\mathrm{N}} 2$ possible? Requires an open approach at C_{α} and C_{β}.
2. Is E 2 possible? Requires anti $\mathrm{C}_{\beta}-\mathrm{H}$.
3. How many possible products are there?
4. What is the relationship among the starting structures?
5. What is the relationship among the products?
6. Are any of the starting structures chiral?
7. Are any of the product structures chiral?

Examples - group B

1. Which conformation is reactive?
2. Is $\mathrm{S}_{\mathrm{N}} 2$ possible? Requires an open approach at C_{α} and C_{β}.
3. Is E2 possible? Requires anti $\mathrm{C}_{\beta}-\mathrm{H}$.
4. How many possible products are there?
5. What is the relationship among the starting structures?
6. What is the relationship among the products?
7. Are any of the starting structures chiral?

chair 1

chair 2
8. Are any of the product structures chiral?
strong base/nucleophile conditions $\left(\mathrm{E}^{+}=\right.$electrophile, $\mathrm{Nu}:=$ nucleophile $)$
n-butyl lithium (powerful nucleophile at epoxides and carbonyls $(\mathrm{C}=\mathrm{O})$, and the "most powerful base" at other times)

nucleophile $=$?
electrophile $=$?

nucleophile $=$?
electrophile $=$?

nucleophile $=$?
electrophile $=$?

$\mathrm{H}_{3} \mathrm{C}-\ddot{\mathrm{Br}}: \quad \longrightarrow$
Should be $\mathrm{S}_{\mathrm{N}} 2$, but does not work well. Too many side reactions.

Should be $\mathrm{S}_{\mathrm{N}} 2$, but does not work well. Too many side reactions.

