Summary of features to examine to decide what mechanism is in operation, suggested strategy

- 1. Look at the reaction conditions first. A strong base/nucleophile favors the bimolecular processes ($S_N2,E2$). We will simplistically view strong electron pair donation as coming from anions of all types leading to S_N2 (always backside attack) and E2 reactions (always "anti" C_{β} -H/ C_{α} -X bond orientations, for us). A weak base/nucleophile favors the unimolecular processes ($S_N1,E1$). Weak electron pair donors will typically be neutral solvent molecules, usually water (H₂O), alcohols (ROH), or simple carboxylic acids that are liquid (RCO₂H, methanoic = formic acid or ethanoic = acetic acid), leading to S_N1 and E1 reactions (usually $S_N1 > E1$). See more details in the chart, just below.
- 2. Next, look to the reactant structures (CH₃X, 1°RX, 2°RX, 3°RX, allylic, benzylic), (X = good leaving group = -Cl, -Br, -I, -OTs, $-OH_2^+$). It's important that you understand the C_a and C_b positions.

a. CH_3X (methyl) =

- i. bimolecular conditions only reacts in $S_N 2$ reactions with strong nucleophiles (negative charge in our course, neutral sulfur and phosphorous are exceptions) no other reactions
- ii. no unimolecular reactions $(S_N 1 / E1)$ due to the high energy of ${}^+CH_3$.

a. 1°RX (primary) =

- i. bimolecular conditions mainly $S_N 2$, some E2, exception = mainly E2 with potassium t-butoxide
- ii. no unimolecular reactions $(S_N 1 / E1)$ due to the high energy of $1^{\circ}R^+$.

b. 2°RX (secondary) =

- i. bimolecular conditions both $S_N 2$ and E2 are usually observed. In our course we will assume mostly $S_N 2$, except for stronger, sterically bulky bases and bulky bases, (see chart below) where E2 becomes the major product.
- ii. unimolecular conditions generally S_N1 more than E1, except E1 is major with ROH/H₂SO₄/ Δ . (see chart below)

c. 3°RX (tertiary) =

- i. bimolecular condition only E2, most stable alkene is the major product, 3° RX is too sterically hindered for $S_N 2$ reactions to compete.
- ii. unimolecular conditions generally $S_N 1 > E1$, except E1 is the major product with ROH/H₂SO₄/ Δ .

d. Unreactive R-X patterns include: 1º neopentyl RX, vinyl RX and phenyl RX – No reaction

Simplified, generic rules for our course.

Simplified, generie it	ales for our course.		I	1	1	1
typical strong base nucleophiles are: (for our course)	H ₃ C X methyl	$\begin{array}{c} R \\ C \\ H_2 \\ Primary \end{array}$	R CH R secondary	R C X R R R tertiary	C H ₂ allylic	benzylic H ₂
H H hydroxide	only S _N 2	$S_N 2 > E2$	E2 > S _N 2 more basic	only E2	only S _N 2	only $S_N 2$
$R \xrightarrow{O : \Theta}_{alkoxide} Na$	only S _N 2	$S_N 2 > E2$	E2 > S _N 2 more basic	only E2	only S _N 2	only $S_N 2$
R carboxylate	only S _N 2	S _N 2 > E2	S _N 2 > E2 less basic	only E2	only S _N 2	only S _N 2
t-butoxide	only S _N 2	E2 > S _N 2 exception (bulky & basic)	only E2	only E2	not discussed in our course	not discussed in our course
$H^{S} \stackrel{\Theta}{\underset{Na}{\longrightarrow}} Na^{\oplus}$ hydrogen sulfide	only S _N 2	$S_N 2 > E2$	S _N 2 > E2 less basic	only E2	only S _N 2	only S _N 2
thiolate Na	only S _N 2	S _N 2 > E2	S _N 2 > E2 less basic	only E2	only S _N 2	only S _N 2
$ \begin{array}{c} \textcircled{\begin{tabular}{c} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	only S _N 2	$S_N 2 > E2$	S _N 2 ≥ E2 less basic	only E2	only S _N 2	only S _N 2
$R^{\bullet} \stackrel{\bullet}{\underset{R}{\overset{\bullet}}} \stackrel{\bullet}{\underset{R}{\overset{R}{\overset{\bullet}}} \stackrel{\bullet}{\underset{R}{\overset{\bullet}}} \stackrel{\bullet}{\underset{R}{\overset{\bullet}} \stackrel{\bullet}{\underset{R}{\overset{\bullet}}} \stackrel{\bullet}{\underset{R}{\overset{\bullet}}} \stackrel{\bullet}{\underset{R}{\overset{\bullet}}} \stackrel{\bullet}{\underset{R}{\overset{\bullet}}} \stackrel{\bullet}{\underset{R}{\overset{R}{\overset{\bullet}}} \stackrel{\bullet}{\underset{R}{\overset{\bullet}}} \stackrel{\bullet}{\underset{R}{\overset{R}{\underset{R}{\overset{R}}}} \stackrel{\bullet}{\underset{R}{$	not discussed in our course	only E2 exception (bulky & basic)	only E2	only E2	not discussed in our course	not discussed in our course
·N ^C O cyanide Na	only S _N 2	$S_N 2 > E2$	S _N 2 > E2 less basic	only E2	only S _N 2	only S _N 2
$Na = C = C \Theta$ $R = acetylide$	only S _N 2	$S_N 2 > E 2$	E2 > S _N 2 more basic	only E2	only S _N 2	only S _N 2
$\begin{array}{c} & & & \oplus \\ & & & & \\ & & & \\ H_3C & & & \\ \hline & & & \\ H_3C & & & \\ H_3C & & & \\ \hline & & & \\ H_3C & & & \\ H_3C & & & \\ \hline & & & \\ H_3C & & & \\ H_3C & & & \\ \hline & & & \\ H_3C & & & \\ H_3C & & & \\ \hline & & & \\ H_3C & & & \\ H_3C & & & \\ \hline & & & \\ H_3C & & & \\ H_3C & & & \\ \hline & & & \\ H_3C & & & \\ H_3C & & & \\ \hline & & & \\ H_3C & & & \\ H_3C & & & \\ \hline & & & \\ H_3C & &$	only S _N 2	$S_N 2 > E2$	S _N 2 ≥ E2 less basic	only E2	only S _N 2	only S _N 2
⊖ R: (MgBr)+ Grignard reagents	Not generally useful with RBr in our course.	Not generally useful with RBr in our course.	Not generally useful with RBr in our course.	Not generally useful with RBr in our course.	Not generally useful with RBr in our course.	Not generally useful with RBr in our course.
$D \qquad \qquad$	only S _N 2	S _N 2 > E2	S _N 2 > E2 less basic	only E2	only S _N 2	only S _N 2

NaH, KH and NaNR2 react only as bases in our course. Grignard reagents, RMgBr, do not undergo useful reactions with RBr compounds.

Carbonyl Patterns (C=O) - Simple Examples For Our Course. Most of these reactions require a final workup step (protonation of the alkoxide anion).

weak electrophiles when neutral strong base/nucleophile	O: H H H H H H H	:O: $H_{3}C$ H $H_{3}C$ H $H_{3}C$ H $H_{3}C$ H $H_{3}C$ H $H_{3}C$ H	H_{3C} H_{3C} H_{3C} C CH_{3}	$H_{3}C$ C C C C C C C C C
H H hydroxide	carbonyl addition (hydration)	carbonyl addition (hydration)	carbonyl addition (hydration)	acyl substitution (ester hydrolysis) base hydrolysis saponification
R Na [⊕] alkoxides	carbonyl addition (hemi-acetal)	carbonyl addition (hemi-acetal)	carbonyl addition (hemi-ketal)	not discussed in our course
.N ^C ⊖ Na [⊕] cyanide	carbonyl addition (cyanohydrin)	carbonyl addition (cyanohydrin)	carbonyl addition (cyanohydrin)	not discussed in our course
R Na [®] terminal acetylides	carbonyl addition (propargyl alcohol)	carbonyl addition (propargyl alcohol)	carbonyl addition (propargyl alcohol)	not discussed in our course
⊖ R: (MgBr) Grignard reagents made from RBr + Mg	carbonyl addition (1º alcohol)	carbonyl addition (2º alcohol)	carbonyl addition (3º alcohol)	reacts twice 1. carbonyl substitution 2. carbonyl addition (3º alcohol)
$D = Li^{\oplus}$ $D = AI = D$ $LiAlH_4$ $D = NaBH_4$ $D = Na$	carbonyl addition (methanol)	carbonyl addition (1º alcohol)	carbonyl addition (2º alcohol)	reacts twice 1. carbonyl substitution 2. carbonyl addition (1º alcohol)

Mechanisms:

Epoxide Compounds - Simple Examples For Our Course. Most of these reactions require a final workup step (protonation of the alkoxide anion).

weak electrophiles when neutral strong base/nucleophile	ethylene oxide	R monosubstituted epoxide	R R geminal substituted epoxide	cyclohexene oxide
H	epoxide addition with	epoxide addition with	epoxide addition with	epoxide addition with
H	nucleophilic attack at	nucleophilic attack at	nucleophilic attack at	nucleophilic attack at
hydroxide	less hindered carbon	less hindered carbon	less hindered carbon	less hindered carbon
R Na [⊕] alkoxides	epoxide addition with nucleophilic attack at less hindered carbon			
$\frac{N}{cyanide} \overset{C \bullet}{\underset{cyanide}{}} Na^{\oplus}$	epoxide addition with	epoxide addition with	epoxide addition with	epoxide addition with
	nucleophilic attack at	nucleophilic attack at	nucleophilic attack at	nucleophilic attack at
	less hindered carbon	less hindered carbon	less hindered carbon	less hindered carbon
R Na [®] terminal acetylides	epoxide addition with nucleophilic attack at less hindered carbon			
$ \begin{array}{c} \Theta \\ R : (MgBr) \end{array} $ Grignard reagents made from RBr + Mg	epoxide addition with	epoxide addition with	epoxide addition with	epoxide addition with
	nucleophilic attack at	nucleophilic attack at	nucleophilic attack at	nucleophilic attack at
	less hindered carbon	less hindered carbon	less hindered carbon	less hindered carbon
$\begin{array}{c} D \\ \ominus & Li^{\textcircled{P}} \\ D \underline{} Al \underline{} D \\ & LiAlH_4 \\ D \\ NaBH_4 \\ lithium aluminium \\ deuteride (hydride) \end{array}$	epoxide addition with	epoxide addition with	epoxide addition with	epoxide addition with
	nucleophilic attack at	nucleophilic attack at	nucleophilic attack at	nucleophilic attack at
	less hindered carbon	less hindered carbon	less hindered carbon	less hindered carbon

Mechanisms:

typical weak base nucleophiles are: (for our course)	H ₃ C X methyl	$\begin{array}{c} R \\ C \\ H_2 \\ Primary \end{array}$	R CH R secondary	R C X R R tertiary
H H	no reaction	no reaction	S _N 1 > E1 (makes alcohols)	$S_N 1 > E1$ (makes alcohols)
R ^O H	no reaction	no reaction	$S_N 1 > E1$ (makes ethers)	S _N 1 > E1 (makes esters)
; о; н	no reaction	no reaction	$S_N 1 > E1$ (makes ethers)	S _N 1 > E1 (makes esters)

 $S_{N}\mathbf{1}$ / $E\mathbf{1}$ Tendencies - Simplified, generic rules for our course.

Useful ROH Reactions - Not enough time to discuss these in our course. Simplified, generic predictions.

alcohol reactions in strong acid: (for our course)	$H \xrightarrow{X} (X = Cl, Br \text{ or } I)$	PBr ₃	1. TsCl 2. NaBr	CrO ₃ pyridine (PCC)	CrO ₃ H ₂ O/H ₃ O ⁺ (Jones)	others not discussed Fischer Ester Synthesis
H ₃ C OH methyl	S _N 2 make RBr	S _N 2 make RBr	not needed	E2 aldehydes	E2 x 2 carboxylic acids (C=O hydrate)	H_2SO_4 (cat.) ROH + RCO ₂ H (-H ₂ O) Acetal / Ketal Synthesis
$\begin{array}{c} R & \longrightarrow \\ C \\ H_2 \\ Primary \end{array} OH$	S _N 2 make RBr	S _N 2 make RBr	not needed	E2 aldehydes	E2 x 2 carboxylic acids (C=O hydrate)	TsOH (cat.) $2 \times \text{ROH} + \text{R}_2\text{CO} (-\text{H}_2\text{O})$ Imine Synthesis TsOH (cat.)
R OH CH R secondary	S _N 1 make RBr	S _N 1 make RBr	1. acyl-like substitution 2. S _N 2 make RBr (avoids rearrangements)	E2 ketones	E2 ketones	$RNH_2 + R_2CO (-H_2O)$ $R_2NH + R_2CO (-H_2O)$ Alkoxide Synthesis NaH + ROH
R OH R R tertiary	S _N 1 make RBr	S _N 1 make RBr	not discussed	no reaction	no reaction	E1 Alkene Synthesis ROH + H_2SO_4 Δ (- H_2O) Others, but no room