For voting, go to: https://pollev.com/lauriestarke263 or text LAURIESTARKE263 to 37607 to join poll

Cal Poly Pomona

CHM 3140 Organic Chemistry I Announcements 4/16/24

Organic Chemistry I, CHM 3140, Dr. Laurie Nuclear Magnetic Resonance (NMR) Spectrosco

See Week 12 in Canvas

- NMR (Ch 15)
- Chemical Rxns (Ch 6)
- Sn2/Sn1 & E2/E1 (Ch 7)

¹H NMR Problem-Solving Strategies

The goal of solving a ¹H NMR spectrum is to determine the structure th NMR data. Since the NMR provides a lot of data, we must develop a system determine what pieces are present. Next, we figure out how those pieces fit our structure to see if it matches the spectral data given.

- 1) If given an IR spectrum: what functional groups (FG) are present? These a
- 2) If given molecular formula: check for sites/degrees of unsaturation (DU). If saturated, formula fits $C_nH_{2n+2+\#N}$.

every 2 missing H's = 1 DU each DU = a π bond or a ring molecules. Approximate coupling constants are indicated. The multiplicities are s = singlet, d = doublet, t = triplet, q = quartet, qnt = quintet, sex = sextet, se = septet, o = octet, n = nonet, m = multiplet. The degree of unsaturation can help determine the possible number of rings and/or pi bonds. Match each type of hydrogen in the problems with the hydrogen atoms in your structures. Several C NMR problems follow. Propose reasonable structures.

See Week 12 in Canvas

- NMR (Ch 15)
- Chemical Rxns (Ch 6)
- Sn2/Sn1 & E2/E1 (Ch 7)

Organic Chemistry CHM 3140 Dr. Laurie S. Starkey, Cal Poly Pomona Study of Chemical Reactions & Mechanisms - Chapter 6 (Klein)

6-1

- I) Thermodynamics (6.1, 6.2, 6.3, 6.4) (K_{eq} , ΔG , ΔH , ΔS)
 - A) E vs. POR diagrams (6.6)
 - B) Estimating ΔH using bond dissociation energies
- II) Kinetics and reaction rate variables (6.5)
- III) Two-step mechanisms and intermediates (6.6)
 - A) carbocation stability (6.8)
 - B) carbocation rearrangements (6.11)
- IV) Mechanisms and arrow-pushing patterns (6.8, 6.9, 6.10)

Read on your own:

6.12 Reversible & Irreversible Arrows

Moved to Ch. 7:

6.7 Nucleophiles & Electrophiles (& SkillBuilder 6.2)

See Week 12 in Canvas

- NMR (Ch 15)
- Chemical Rxns (Ch 6)
- Sn2/Sn1 & E2/E1 (Ch 7)

California State Polytechnic Universi

Dr. Laurie S. Starkey, Organic Chemistry I, CHM 3140

Ch. 7 Summary, Part 1 (Klein 4th Ed.): Alkyl Halides/Substitution Reactions

- I. Introduction to Alkyl Halides (7.1, 7.2)
 - a. Alkyl, vinyl, aryl halides
 - b. Substitution and Elimination reactions
- II. Substitution Reactions (R-LG \rightarrow R-Nu)
 - a. Electrophiles (E⁺) (6.7)
 - i. Contain + or δ^+ sites (e.g., alkyl halides, carbocations)
 - b. Nucleophiles (Nu:) (6.7, 7.4)
 - i. Contain a source of electrons (e.g., lone pair or pi bond)
 - ii. More stable → less reactive, weaker Nu:
 - iii. More electron-rich → better Nu:
 - iv. Less electronegative → better Nu:
 - v. Larger atom → more polarizable, better Nu:
 - c. Leaving Groups (7.1, 7.10)
 - i. Stable species (weak bases) make good leaving groups (e.g., X-, TsO-)
 - ii. A good LG makes a favorable substitution reaction ($\Delta G \le 0$)
 - iii. Make OH a good LG by protonation or tosylation (7.10)

Substitution Reactions

See Week 12 in Canvas

- NMR (Ch 15)
- Chemical Rxns (Ch 6)
- Sn2/Sn1 & E2/E1 (Ch 7)

Organic Chemistry I, CHM 3140, Dr. Laurie S. Starkey Elimination Reactions & Alkenes Summary (Klein

- I. Review the pi (π) bond and Nomenclature of alkenes and alkynes (8.3, 9.2)
- II. Alkene stability (7.6)
 - i) more alkyl groups, more stable
 - ii) trans is more stable than cis (except in small rings)
 - iii) pi bond unstable at bridgehead carbon (Bredt's Rule)
 - iv) alkene is more stable if conjugated with another pi bond (16.2)
- III. Alkene synthesis: E2 mechanism (one-step) (7.5, 7.7)
 - i) requires strong base (HO-, RO-, R2N-)
 - ii) stereochemistry: anti-elimination of β-hydrogen and LG
 - iii) regiochemistry: depends on base choice
 - i) usually gives the most stable alkene (Zaitsev with NaOH, MeONa, EtONa)
 - ii) bulky base gives less substituted alkene (Hofmann with t-BuOK)
 - iv) often in competition with S_N2 (E2 favored unless primary RX)
- IV. Alkene synthesis: E1 mechanism (7.8)
 - i) two steps, via carbocation (rearrangement can occur)
 - ii) proceeds with loss of stereochemistry (both E and Z alkenes formed)
 - iii) regiochemistry: gives the most stable alkene (Zaitsev)
 - iv) usually in competition with Sn1 (E1 favored with heat)

Elimination Reactions

Exam III Thursday, 4/18 (Chapters 15, 6, 7)

60-minute written exam

no Scantron, no lecture after

No notes/calculators/model kits allowed

• Bring pencil(s), eraser

Sample exams on course homepage

See typical length, format

You must come to your registered section

3 pm or 5 pm (Check BroncoDirect)

Extra office hour/review session (Isstarkey OH Zoom)

• Wednesday 4/17, 9-10 pm

Exam III Free Red Ink: NMR, Sn1/Sn2 Mech./Dehydration

Don't wait until Thursday night! Set a reminder!

CHM 3140 Organic Chemistry I – Dr. Laurie S. Starkey – NMR Problem Set					Set a reminde	r
Name:	Section (da			//time):		
Each of the following ¹ H NMR spectra for each spectrum and label each proto of unsaturation is helpful and careful e	on on the structu	ire (a/b/c) to match the co	rrespondi			
to estimate the chemical shifts (using t				Californ	rnia State Polytechnic University, Pomona	
a 2H			M 3140,	Dr. L. S. Starkey, Org Name: In the reaction of the tosylate showr For each reaction: a) predict the ma b) provide a com	ganic Chemistry I, CHM 3140, S _N 2 vs. S _N 1 Homework vn and sodium cyanide, both S _N 2 and S _N 1 mechanisms are possible. najor product(s) expected. (stereochemistry?) mplete mechanism. (watch details: lone prs, formal charges, arrows) i.vs. POR diagram. (give structures for the transition states) Bond-line ructure ructure or TSO]
			following	Section: (day dehyration reaction (pay close att	3 12.2 12.0	

Extra Practice/Exercises on Homepage

Using text problems for Self-Assessment

To earn homework credit for Chapters 6, 7-1, 7-2 work on **SkillBuilders** and/or **EOC problems**!

- → Can be hand-written and/or done in WileyPLUS.
- → Submit each to Gradescope by Thursday night.

