Organic Chemistry I, CHM 3140 Dr. Laurie S. Starkey, Cal Poly Pomona Chapter 15 NMR, Part 1 - Practice Problems

For clicker question voting, go to: https://pollev.com/lauriestarke263 or text LAURIESTARKE263 to 37607

How many signals are expected for each compound? Label each unique proton type (a/b/c).

Describe the relationship of the indicated protons:

- a) enantiotopic (one signal in NMR)
- b) enantiotopic (separate signals in NMR)
- c) diastereotopic (one signal in NMR)
- d) diastereotopic (separate signals in NMR)
- e) homotopic (one signal in NMR)

1)

Match each highlighted proton with its approximate chemical shift:

1, 2, 4, 5, 7, 10 ppm

Also, predict the splitting pattern for each highlighted proton. *Note: aldehyde protons typically do not couple with neighboring protons.*

- a) singlet (s) d) quartet (q)
- b) doublet (d) e) other

c) triplet (t)

Predicting a ¹H NMR spectrum

There are two isomeric carboxylic acids with the formula $C_3H_5O_2CI$. Provide a structure that matches each set of ¹H NMR data.

Isomer A		Isomer B	
1.7 ppm	3H d	2.9 ppm	2H t
4.4 ppm	1H q	3.8 ppm	2H t
12.4 ppm	1H s	11.7 ppm	1H s

Interpreting ¹³C NMR Spectra (Klein section 15.12)

- one signal for each unique carbon type
- chemical shifts \sim 0 to 220 ppm
- signals are typically all singlets ("proton-decoupled" or "broadband decoupled")
- # of hydrogens attached to each carbon can be determined by DEPT experiment (see Klein 15.13 and SkillBuilder 15.10, but we will not be covering DEPT in CHM 3140)
- ¹³C isotope ~1% of carbon atoms, so ¹³C NMR requires more sample and/or more scans

How could you use ¹³C NMR to distinguish between the three isomers of dimethylbenzene?

Predict the number of ¹³C NMR signals (label a/b/c) and the approximate chemical shifts for each.

Each of the compounds shown has seven signals in its ¹³C NMR spectrum. Which structure matches the spectrum provided? Explain

Which would be better to distinguish the following compounds, ¹H or ¹³C NMR (or are they equally suitable)? Explain, and describe the peak(s) to look for.

$$\begin{array}{c} O\\ CH_3-CH_2-O-C-CH_3 \end{array} \qquad \begin{array}{c} O\\ CH_3-CH_2-C-O-CH_3 \end{array}$$

What is the expected splitting pattern for the indicated protons?

Do you predict the chemical shift to be closer to δ = 2.5 ppm or δ = 3.5 ppm? Explain

Draw the dichloropentane isomer that has exactly two ¹H NMR signals.

Chapter 15 textbook problems for Exam II: SkillBuilders 15.1-15.7 (¹H NMR) and 15.9 (¹³C) Do the following problems: 1-22, 26, 35-39, 41, 42, 45, 47, 48, 50, 63-71. Exam III (interpreting ¹H NMR spectra): SkillBuilder 15.8 and problems: 23-25, 57-59, 64.

Cal Poly Pomona, Dr. L. S. Starkey ¹H and ¹³C NMR - General Chemical Shifts

¹ H NMR: Protons on Carbon				
Type of C-H	δ (ppm)	Description		
R-CH ₃	0.9	alkyl (methyl)		
R-CH ₂ -R	1.3	alkyl (methylene)		
R₃C−H	1.5-2	alkyl (methine)		
CH3	1.8	allylic		
R-C-CH ₃	2-2.3	α to carbonyl		
Ar-CH ₃	2.3	benzylic		
RC≡C-H	2.5	alkynyl		
R ₂ N-CH ₃	2-3	α to nitrogen		
R-CH ₂ -X	3-3.5	α to halogen		
RO-CH ₃	3.8	α to oxygen		
R-CH ₂ -F	4.5	α to fluorine		
H R ₂ C=CR	5-5.3	vinylic		
Ar-H	7.3	aromatic		
O R-C-H	9.7	aldehyde		
¹ H NMR: Protons on Oxygen/Nitrogen				
Type of H	δ (ppm)	Description		
ROH	0.5-5	alcohol		
ArOH	4-7	phenol		
O II R-C-OH	10-13	carb. acid		
RNH ₂	0.5-5	amine		
ArNH ₂	3-5	aniline		
O II R-C-NHR	5-9	amide		

¹³ C NMR: Carbon atoms				
Type of carbon	δ (ppm)	Description		
R−CH ₃	10-30	methyl		
R-CH ₂ -R	15-55	methylene		
R ₃ C-H R R-C-R R	20-60	methine or quaternary		
C—I	0-40			
C-Br	25-65			
C-N	40-60			
C-CI	35-80			
C-0	40-80			
RC≡CR	65-90	alkynyl		
$R_2C=CR_2$	100-150	alkenyl		
$\langle \rangle$	110-170	aromatic		
$\left.\begin{array}{c} 0\\ R-\ddot{C}-OH\\ 0\\ R-\ddot{C}-OR\\ 0\\ R-\ddot{C}-NH_2 \end{array}\right\}$	165-185	C=O, carboxylic acid, ester, amide		
0 R-C-R 0 R-C-H	185-220	C=O, ketone or aldehyde		

R = alkyl group

Ar = aromatic ring, such as a benzene ring