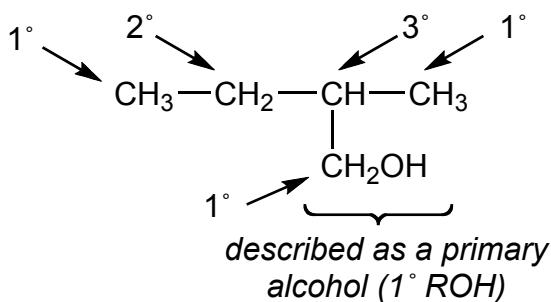

**Alkane Structures (B&P 3.1, 3.2, 3.4)**

Alkanes are **saturated hydrocarbons** (only carbon and hydrogen, and with the maximum number of hydrogens - so no pi bonds, only sigma/single bonds)

 alkane formula:  $\mathbf{C_nH_{2n+2}}$ 

 cycloalkane formula:  $\mathbf{C_nH_{2n}}$ 

|                                                                                                                  |         |                                            |
|------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------|
| $\mathbf{CH_4}$                                                                                                  | methane | $\mathbf{CH_4}$                            |
| $\mathbf{CH_3CH_3}$                                                                                              | ethane  | $\mathbf{C_2H_6}$                          |
| $\mathbf{CH_3CH_2CH_3}$                                                                                          | propane | $\mathbf{C_3H_8}$                          |
| $\mathbf{CH_3(CH_2)_2CH_3}$<br> | butane  | $\mathbf{C_4H_{\underline{\hspace{1cm}}}}$ |
| $\mathbf{C_5H}$                                                                                                  | pentane | $\mathbf{C_8H}$                            |
| $\mathbf{C_6H}$                                                                                                  | hexane  | $\mathbf{C_9H}$                            |
| $\mathbf{C_7H}$                                                                                                  | heptane | $\mathbf{C_{10}H}$                         |




line drawing for decane:

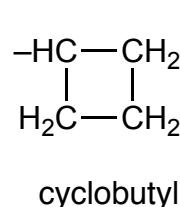
 Draw isomers (constitutional isomers) of  $\mathbf{C_5H_{12}}$ .

**Types of carbons**

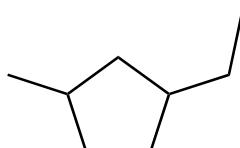
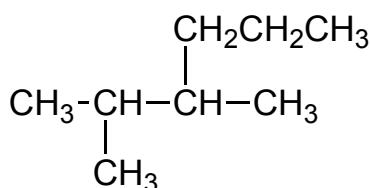
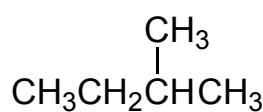
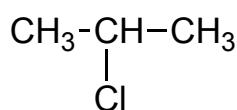
|                          |                           |
|--------------------------|---------------------------|
| primary ( $1^\circ$ )    | attached to one carbon    |
| secondary ( $2^\circ$ )  | attached to two carbons   |
| tertiary ( $3^\circ$ )   | attached to three carbons |
| quaternary ( $4^\circ$ ) | attached to four carbons  |



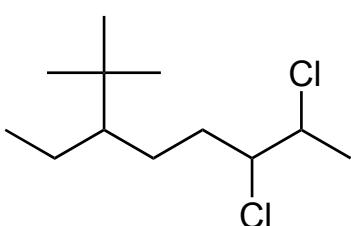
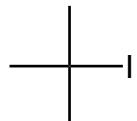
- Find the longest carbon chain (if there is a tie, choose chain with the most substituents).  
Name parent (one C = methane, two C's = ethane, three C's = propane, etc.).
- Number the carbon chain, starting from the end closest to the first substituent.
- Name and number the substituents (use di, tri, tetra, etc., prefixes for groups that appear more than once). Insert dashes between numbers and letters, and commas between numbers
- Alphabetize\* and list substituents before the parent name. \*Ignore all prefixes other than iso.


**Alkyl Substituents (R-)**

(groups attached to parent)

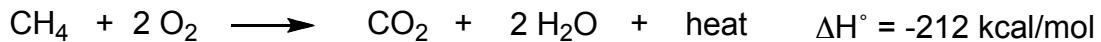




|                                          |             |
|------------------------------------------|-------------|
| $-\text{CH}_3$                           | methyl (Me) |
| $-\text{CH}_2\text{CH}_3$                | ethyl (Et)  |
| $-\text{CH}_2\text{CH}_2\text{CH}_3$     | propyl (Pr) |
| $-\text{CH}_2(\text{CH}_2)_2\text{CH}_3$ | butyl (Bu)  |

**Other Substituents**



(groups attached to parent)

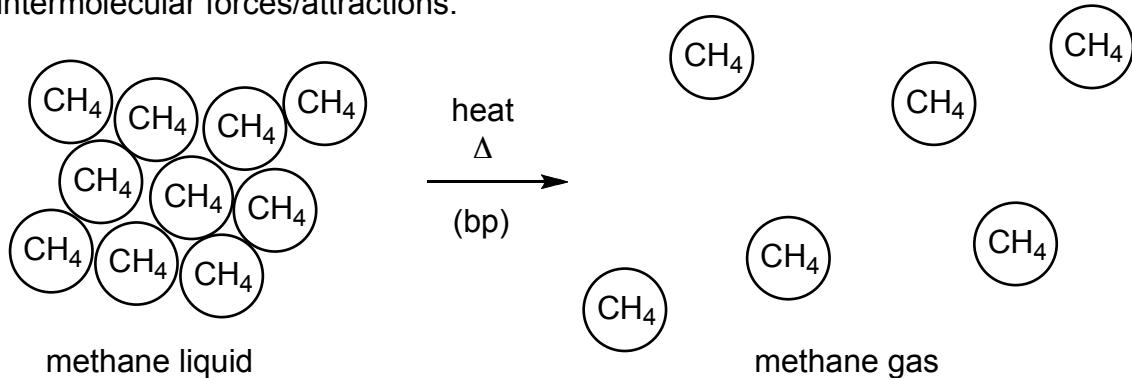


|              |        |
|--------------|--------|
| $-\text{F}$  | fluoro |
| $-\text{Cl}$ | chloro |
| $-\text{Br}$ | bromo  |
| $-\text{I}$  | ido    |


**Common names for alkyl groups**

|                                          |                                    |
|------------------------------------------|------------------------------------|
| $-\text{CH}_2\text{CH}_2\text{CH}_3$     | <i>n</i> -propyl ( <i>n</i> -Pr)   |
| $\text{CH}_3\text{CHCH}_3$               | isopropyl ( <i>i</i> -Pr)          |
| $-\text{CH}_2(\text{CH}_2)_2\text{CH}_3$ | <i>n</i> -butyl ( <i>n</i> -Bu)    |
| $\text{CH}_3\text{CHCH}_2\text{CH}_3$    | <i>sec</i> -butyl ( <i>s</i> -Bu)  |
| $\text{CH}_2\text{CHCH}_3$               | isobutyl ( <i>i</i> -Bu)           |
| $\text{CH}_3-\text{C}-\text{CH}_3$       | <i>tert</i> -butyl ( <i>t</i> -Bu) |

*sec*-butyl alcohol*n*-propyl alcohol


## Properties of Alkanes (B&P 3.8)

- nonpolar, hydrophobic
- isolated from petroleum crude oil (B&P 3.10)
- very stable and unreactive (all strong sigma bonds - no pi bonds or lone pairs)
  - used as fuel: combustion reaction (B&P 3.9)



## Predicting Relative Boiling Points (B&P 3.8)

Physical properties, such as water solubility and boiling point (bp) are based on intermolecular forces/attractions.

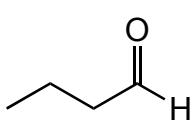
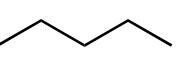


if  molecules are strongly attracted to one another, then

- requires a lot of energy to separate them from each other
- will have a high/low boiling point

### Types of "nonbonding" interactions

**A** Dipole-Dipole

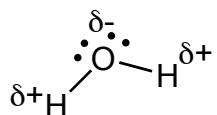


**B** Hydrogen Bonding

**C** van der Waal's/London Dispersion

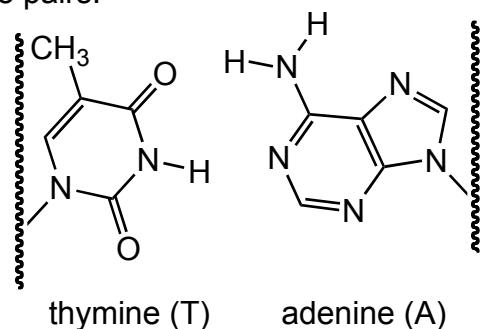
**A Dipole-Dipole** - attraction between polar molecules (consider geometry! Is  $\text{CCl}_4$  polar?)

a polar molecule:




|       |                                                                                     |                                                                                      |                |
|-------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------|
| NaCl  |  |  | Overall trend: |
| bp °C | 1413                                                                                | 76                                                                                   | polarity<br>bp |

## B Hydrogen Bonding - strongest known dipole due to H on N or O


3-4

|                  |                                    |                                       |                                                 |
|------------------|------------------------------------|---------------------------------------|-------------------------------------------------|
| H—N              | H—O                                | both are <u>extremely</u> polar bonds |                                                 |
| H <sub>2</sub> O | CH <sub>3</sub> CH <sub>2</sub> OH | CH <sub>3</sub> OCH <sub>3</sub>      | CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> |
| bp °C            | 100                                | 78                                    | -24                                             |
|                  |                                    |                                       | -42                                             |

hydrogen-bonding  
in water:



hydrogen-bonding  
in DNA base pairs:



## C Van der Waal's/London Dispersion Forces - induced (temporary) dipoles in nonpolar molecules



temporary attraction because of uneven  
distribution of electrons

- the greater the surface area, the greater the VDW/Dispersion forces (think "Velcro")
- the higher the MW, the higher the bp (if all polarity is equal)

|                                                                 |                                                   |                                                                                 |                                 |
|-----------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------|
| CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> —C(CH <sub>3</sub> ) <sub>2</sub> | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | C <sub>31</sub> H <sub>64</sub> |
| bp °C                                                           | -1                                                | 10                                                                              | 36                              |
|                                                                 |                                                   |                                                                                 | > 300                           |

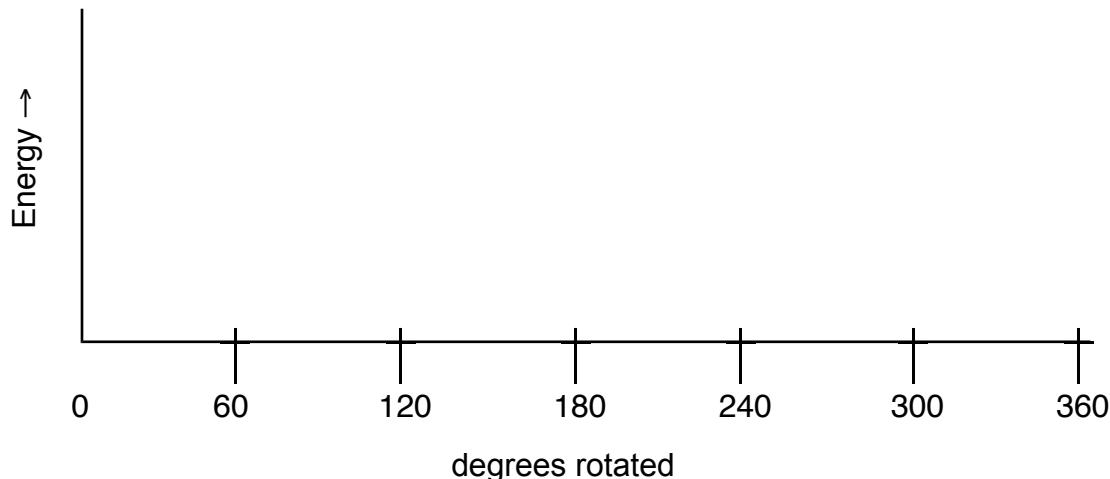
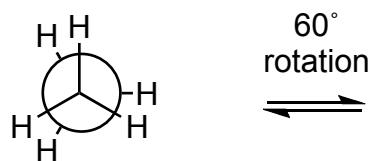
straight-chain  
  
more surface area  
(more contact)

vs.  
branched  
  
less surface area  
(less contact)

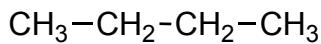
### to predict boiling points

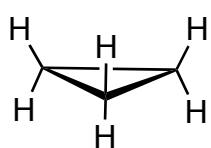
- 1) H-bonding (OH or NH)
- 2) polar vs. nonpolar
- 3) ↑ MW, ↑ bp
- 4) branching (least important!)

## Conformations of Alkanes (B&P 3.6)



3-5

conformers - structures that differ only by rotation about single/sigma ( $\sigma$ ) bonds


Ethane

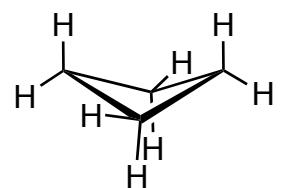



Newman Projection



Conformations of Butane

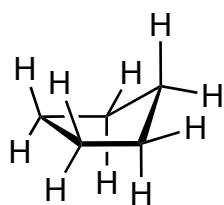





cyclopropane



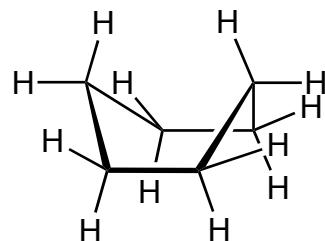
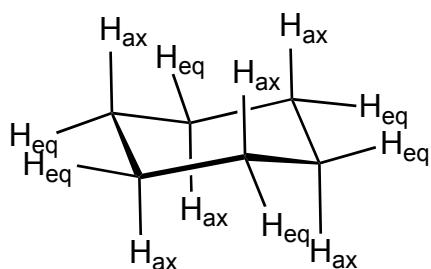
cyclobutane


- sp<sup>3</sup> bond angle can't be 109.5°
- eclipsing H's



\*\* these small rings have a large amount of "ring strain" \*\*

### cyclopentane



- has very little ring strain



the envelope conformation

### cyclohexane

- has NO ring strain!
- six-membered rings are commonly found in nature



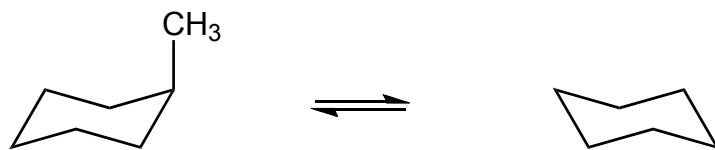
chair conformation

H<sub>ax</sub> = axial position  
(straight up or down)

H<sub>eq</sub> = equatorial position  
(slightly up or down)

boat conformation

drawing a chair:




~~~~~ opposite sides  
— parallel



Need more help?  
See cyclohexane  
playlist on YouTube!

Draw and compare stabilities of the two chair conformations of methylcyclohexane (chair "flip").



Draw the two chairs of *cis*-1-*t*-butyl-4-methylcyclohexane. Which is more stable? (B&P 3.7)

**Suggested Problems:**  
see CHM 201 course  
homepage



**Extra credit (+1 point on Exam I):**

Do the Ch 1-3 "Putting it Together" problems 1-19 (but skip 14e, 15 and 16). Exchange your work with a classmate and grade with red ink (or self correct). Turn in "graded" work.