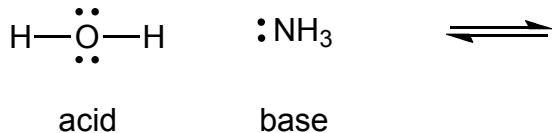


Acid: H^+ (proton) donor

Base: H^+ (proton) acceptor

(*Bronsted-Lowry definitions*)

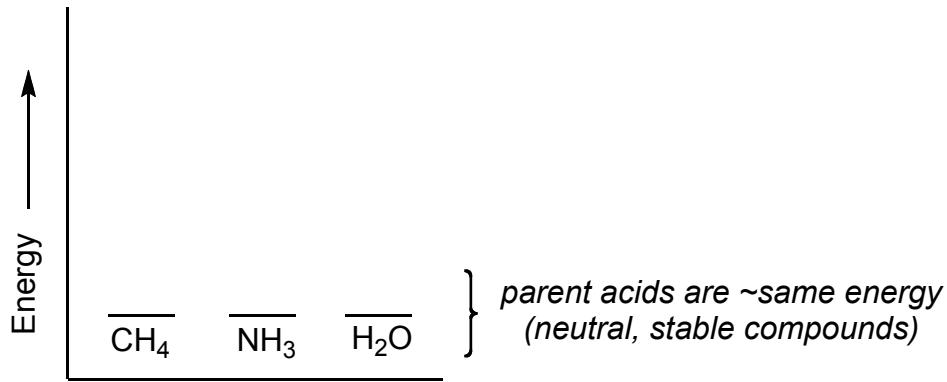

Acid-Base Reaction (B&P 2.2) (mechanism needs two arrows)

Two acids are in competition - forward and reverse reactions are in **equilibrium**. (B&P 2.4)

****Equilibrium lies in the direction of the _____ acid/base pair ****

Which is the stronger acid? Use pK_a table (B&P 2.3) or predict...

Acidity vs. Structure (B&P 2.5)


1) Periodic Trend (across row)

compare these acids:	CH_4	NH_3	H_2O
pK_a	50	38	16

why such a large difference in pK_a ? Look at conjugate bases!

draw the conj. bases:

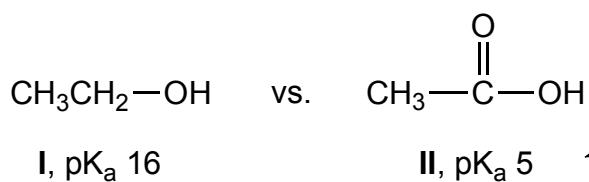
Conclusion: the stronger acid is the one with the most stable (less reactive, weaker) conjugate base!

2) Periodic Trend (down a family/column)

compare these acids:	HF	HCl	HBr	HI
pK_a	3	-7	-9	-10

why such a large difference in pK_a ? Look at conjugate bases!

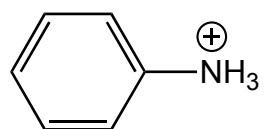
draw the conj. bases:



3) Inductive Effects Which is the stronger acid? CH_3OH vs. CF_3OH

draw the conj. bases:

4) Resonance Effects


2-3

II is 100,000,000,000
(100 **BILLION**)
times more acidic
than I !! Why?
Compare conj. bases!

CB-I

CB-II

vs.

I, pK_a 5

II, pK_a 10

CB-I

CB-II

see <http://www.cpp.edu/~lsstarkey/courses/CHM201>
for Acid/Base homework assignment

if HA is a STRONG acid

if HA is a WEAK acid

K_a is the acid dissociation constant

$$K_a = \frac{[\text{H}_3\text{O}^+][\text{A}^-]}{[\text{HA}]}$$

since K_a is often VERY large or VERY small, it's easier to work with pK_a

$$pK_a = -\log(K_a)$$

K_{eq} is the equilibrium constant

$$K_{\text{eq}} = \frac{[\text{products}]}{[\text{reactants}]}$$

if K_a is a LARGE number (>1), then the acid is stronger weaker

if an acid is stronger, then the pK_a is higher lower

for example, sulfuric acid (H_2SO_4) has a K_a of $\sim 1.6 \times 10^5$ and a pK_a of -5.2

acetic acid ($\text{CH}_3\text{CO}_2\text{H}$) has a K_a of 1.8×10^{-5} and a pK_a of 4.75

Lewis Acids and Bases (B&P 2.6)

Lewis Acid: electron-pair acceptor

- has a vacancy (no octet)
- also called an **Electrophile**

Lewis Base: electron-pair donor

- has a lone pair of electrons
- also called a **Nucleophile**

Suggested Problems (the answers to these problems can be found at the back of the book):
 Chapter 2 (Brown & Poon): 1–6, Quick Quiz, 7–33 (odd only, skip 23)