Exam III Review (Chapters 21 and 17/18) - Practice Problems
1 Provide an acceptable name for each compound.

2 Determine whether each compound will readily undergo a Nucleophilic Aromatic Substitution $\left(\mathrm{S}_{\mathrm{N}} \mathrm{Ar}\right)$ and/or readily reacts (i.e., is "activated") under Electrophilic Aromatic Substitution (EAS) conditions.

Categorize each of the following groups as an ortho/para director or a meta director.

Provide the reagents necessary to transform the given starting material into the desired product.

I
1)

2) $\mathrm{Zn}(\mathrm{Hg}), \mathrm{HCl}$
A) I only
B) II only
C) III only

II

D) I and II only
E) I, II and III
2) $\mathrm{NH}_{2} \mathrm{NH}_{2}, \mathrm{TsOH}$
3) $\mathrm{KOH}, \mathrm{H}_{2} \mathrm{O}$, heat

III

Predict the major product.

6 Predict the major Robinson annulation product.

Provide THREE possible synthetic routes:

Provide the necessary reagents.

9

Provide the necessary reagents.

12 Provide the starting materials $\begin{aligned} & \text { Peeded to prepare the given target } \\ & \text { ner }\end{aligned}$ molecule by a Robinson Annulation.

1 Provide an acceptable name for each compound.

A) meta-bromotoluene
B) 3-bromotoluene
C) 1-bromo-3-methylbenzene
D) 3-bromo-1-methylbenzene
E) meta-bromomethylbenzene

1-benzylpyridine

1-phenylpyridine

2-phenylpyrrole

1-phenylpyrrole

2-benzylpyrrole

2-nitrodibenzene

3-nitrodibenzene

2-nitronaphthalene

3-nitronaphthalene

3-nitrodibenzene

2

Determine whether each compound will readily undergo a Nucleophilic Aromatic Substitution ($\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$) and/or readily reacts (i.e., is "activated") under Electrophilic Aromatic Substitution (EAS) conditions.

A)	both	$\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ only	both
B)	both	neither	$\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ only
C)	EAS only	$\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ only	$\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ only
D)	EAS only	neither	neither
E)	neither	neither	$\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ only

3 Categorize each of the following groups as an ortho/para director or a meta director.

A) o / p
B) o / p
C) meta
D) o / p
E) meta

meta
meta o/p o / p
meta

5
Predict the major product.

B)

C)

D)

B)

C)

D)

E)

7 Which of the following sets of reagents would NOT successfully transform the given starting material into the desired product?

1) $\mathrm{Br}_{2}, \mathrm{FeBr}_{3}$
2) $\mathrm{Br}_{2}, \mathrm{FeBr}_{3}$
3) CO_{2}
4) $\mathrm{H}_{3} \mathrm{O}^{+}$
5) $\mathrm{H}_{3} \mathrm{O}^{+}$, heat
6) $\mathrm{CH}_{3} \mathrm{I}, \mathrm{AlCl}_{3}$
7) $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
$\mathrm{H}_{2} \mathrm{SO}_{4}$

D

1) HNO_{3} $\mathrm{H}_{2} \mathrm{SO}_{4}$
2) $\mathrm{H}_{2}, \mathrm{Pd}$
3) $\mathrm{NaNO}_{2}, \mathrm{HCl}$
4) CuCN
5) $\mathrm{H}_{3} \mathrm{O}^{+}$, heat

Provide the necessary reagents.

A) 1) base
2)
C) 1) base
2)

B) 1) base
2)
D) 1) base

E)

Identify suitable reaction conditions for the "base" above.
A) LDA, $-78^{\circ} \mathrm{C}$
C) $\mathrm{NaH}, 25^{\circ} \mathrm{C}$
B) $\mathrm{NaOH},-78^{\circ} \mathrm{C}$
D) $\mathrm{NaOH}, 25^{\circ} \mathrm{C}$
E) All of the above conditions are suitable
A) Base should be added slowly to a solution of the ketone.
B) Ketone should be added slowly to a solution of the base.
C) The order of addition does not matter (both A and B give the same results).

9 Provide the reagents necessary to transform the given starting material into the desired product.

A)

1) $\longrightarrow \mathrm{MgBr}$
2) $\mathrm{H}_{3} \mathrm{O}^{+}$
B) 1$) \mathrm{Mg}$

C) 1) LiAlH_{4}

3) PCC
D) 1) SOCl_{2}
4) $\triangle \mathrm{Br}$
$+\mathrm{AlCl}_{3}$
E) 1) SOCl_{2}

$+\mathrm{AlCl}_{3}$

Provide the necessary reagents.
10

	Part 1	Part 2	
A)	1) PBr_{3} 2) t - BuOK		(+ workup)
B)	1) PBr_{3} 2) t - BuOK		(+ workup)
C)	1) $\mathrm{Br}_{2}, \mathrm{AcOH}$ 2) t-BuOK		(+ workup)
D)	1) $\mathrm{Br}_{2}, \mathrm{AcOH}$ 2) t-BuOK	$\begin{aligned} & \mathrm{NC} \mathrm{CN}_{\mathrm{CN}} \\ & +\mathrm{NaOEt} \end{aligned}$	(+ workup)

Provide the reagents necessary to transform the given starting material into the desired product.

A) 1) NaOEt
2) PhCl
3) $\mathrm{H}_{3} \mathrm{O}^{+}$, heat
B) 1) NaOEt
2) $\mathrm{Ph} \sim \mathrm{Cl}$
3) $\mathrm{H}_{3} \mathrm{O}^{+}$, heat
C) 1) NaOEt
2) $\mathrm{Ph} \sim \mathrm{Cl}$
3) $\mathrm{H}_{3} \mathrm{O}^{+}$, heat
D) 1) NaOEt
2)

3) $\mathrm{H}_{3} \mathrm{O}^{+}$, heat

Provide the starting materials needed to prepare the given target molecule by a Robinson Annulation.

A)

B)

C)

D)

