Library of Organic Chemistry Active Learning Resources LOCAL

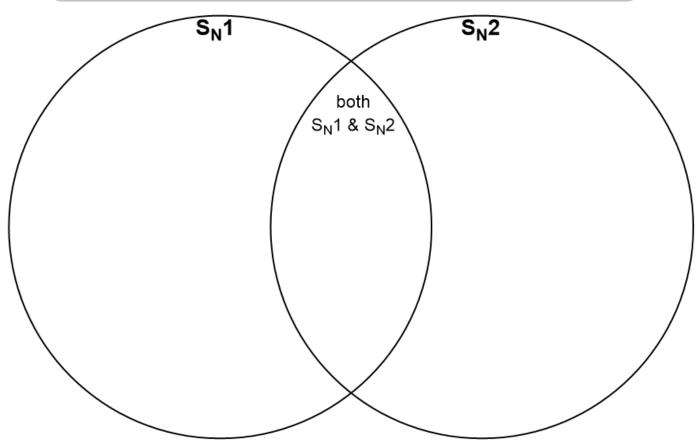
Chapter 7 Alkyl Halides - Part 2 (S_N1 Substitution Reactions)

Provide a mechanism to account for both products formed.

Which would be the faster reaction (A or B)? Explain. (Consider first: $S_N 2$ or $S_N 1$ mechanism?)

$$A$$
 Br
 H_2O
 OH
 Br
 H_2O
 OH

Summary of Substitution Reactions


Alkyl Group	S _N 1	S _N 2
3° (tertiary)	common	rare (N/R)
2° (secondary)	sometimes	sometimes
1° (primary)	rare (N/R)	common
CH ₃ (methyl)	never (N/R)	common
allyl/benzyl	common	common (if not 3°)

S_N2 requires strong Nu: and minimal steric hindrance S_N1 requires a stable carbocation and typically involves a weak Nu:

In the box provided, indicate the mechanism involved in each of the following reactions (S_N1 or S_N2). If no reaction is expected, write NR. Predict the major product(s) expected, and remember to indicate stereochemistry, when appropriate.

Comparison of S_N1 and S_N2 Mechanisms

Categorize each of the following items as being related to S_N1 , S_N2 , or both.

carbocation	sterics	no reaction on vinyl RX	strong Nu:
bimolecular	aprotic solvent	•	Rate = $k[RX][Nu:]$
good LG	unimolecular	HO ⁻ Nu:	t-BuBr = fastest
•	H ₂ O Nu:	Rate = $k[RX]$	no reaction
MeOH Nu:	solvolysis	weak Nu:	on 3° RX
backside attack	MeI = fastest	inversion of	rearrangement
a bond forms in rate-determining step	no reaction on 1º RX	stereochemistry NaOMe Nu:	a bond breaks in rate-determining step
more than one transition state	unhindered E ⁺	protic solvent	racemization
3º RX	only one transition state	2º RX	1° RX

Cal Poly Pomona, Dr. L. S. Starkey, Organic Chemistry I, CHM 3140

S_N 2 and S_N 1 Comparison Homework

Name:	Section (day/time):	
	I sodium cyanide, both $S_N 2$ and $S_N 1$ mechanisms are possible.	
For each reaction: a) predict the major product(s) expected (stereochemistry?) b) provide a complete mechanism (watch details: lone pairs, formal charges, arrows) c) provide an E vs. POR diagram (give structures for the transition states) 		
Complete Lewis structure for NaCN	Complete Lewis structure for tosylate leaving group Θ OTs	

$$\sim$$
 NaCN \sim S_N1