Organic Chemistry I, CHM 3140 Dr. Laurie S. Starkey, Cal Poly Pomona

For clicker question voting, go to: https://pollev.com/lauriestarke263 or text LAURIESTARKE263 to 37607

Chapter 5 Stereochemistry, Part 3 – Practice Problems

- Group work: Draw the enantiomer of the given structure (R or S carvone?) using two methods.
 - (R)-carvone or

(S)-carvone?

Draw mirror image:

Invert all chiral centers:

(R)-carvone smells/tastes like spearmint, and (S)-carvone like caraway seeds (used in rye bread). What does that tell you about the odor receptors in your nose and taste receptors in your mouth?

Group work: albuterol is a bronchodilator that treats asthma when delivered by an inhaler. The drug is marketed as a racemic mixture of its sulfate salt (formed by reaction with H₂SO₄). 2

Predict the product when albuterol reacts with a strong acid such as sulfuric acid (provide mech.). Note: sulfuric acid is diprotic so one molecule of sulfuric acid can protonate two molecules albuterol.

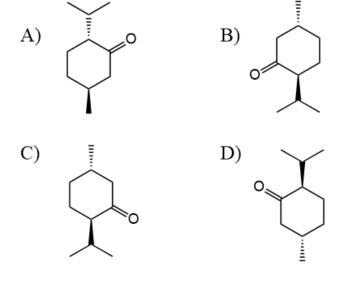
2 OH HOOSO₃H
$$\longrightarrow$$
 2 OH HOOSO₃H \longrightarrow 2 OH SO₄²⁻ (±)-albuterol sulfate (H-albuterol⁺ SO₄²⁻)

Complete the drawings below to draw (R)-(-)-albuterol and (S)-(+)-albuterol.

HO
$$(R)$$
-(-)-albuterol (S) -(+)-albuterol

The enantiomer with the pharmacological activity is marketed as a different drug, called levalbuterol. Do you think levalbuterol is the R or S enantiomer of albuterol? Explain.

An asymmetric synthesis of albuterol resulted in a mixture that was 75% (R) and 25% (S). 3 What is the expected specific rotation of this mixture? Albuter $_{20}^{D}$ [α] -32.2° (c = 0.1 in water)


5 Identify all the chiral centers in lysergic acid diethylamide (LSD). Mark each with *. LSD has how many possible stereoisomers?

lysergic acid diethylamide (LSD)

Shown below is menthone, a minor component of peppermint oil. Determine the configuration of each chiral center in menthone, draw its enantiomer, and predict its specific rotation and boiling point.

enantiomer of menthone $[\alpha]_{D}^{20}$ menthone bp $[\alpha]_{D}^{20}$ -25° bp 207°C

Identify the drawing that does NOT represent the enantiomer of menthone.

7

6

Which of the following statements is NOT true about a given sample of (R)-acid that has a specific rotation $[\alpha] = -45$ and 90% ee?

$$\bigcirc$$
 CO₂H \bigcirc (R)-acid \bigcirc [α

90% ee sample of (R)-acid has

 $[\alpha] = -45$

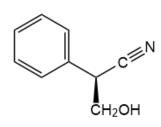
A) The sample is optically active.

B) Pure (R)-acid would have $[\alpha] = -50$.

C) The sample contains 90% (R) enantiomer and 10% racemic mixture.

D) The sample contains 95% (R) enantiomer and 5% (S) enantiomer.

E) The (S)-acid enantiomer is levorotatory.

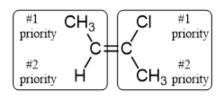

What is the configuration of the marked (*) carbon?

- A) R
- B) S

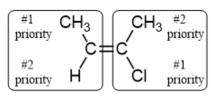
10

C) neither (it is achiral)

VII. Describing the Stereochemistry of Alkenes (E and Z configurations) (5.11)


8

Cis and trans can be used to describe stereochemistry of disubstituted alkenes, but not others.


9

Cis? Trans? Neither!

For trisubstituted or tetrasubstituted alkenes, the stereodescriptors (Z) and (E) are used.

Are the higher priority groups on "ze same side"? Yes! (Z)-2-chloro-2-butene

Are the higher priority groups on "ze same side"? No! (E)-2-chloro-2-butene

What is the relationship of (Z)-2-chloro-2-butene and (E)-2-chloro-2-butene?

- A) constitutional isomers
- B) enantiomers
- C) diastereomers
- D) the same compound
- E) unrelated

Determine *E* or *Z* configurations, as appropriate.

Identify the drawing that does NOT represent the **enantiomer** of (*R*)-carvone.

2

(±)-albuterol

(±)-albuterol sulfate (H-albuterol* SO₄²⁻)

$$A) \begin{bmatrix} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

$$C)\begin{bmatrix} & OH & \\ H_2O & \\ & HO & \end{bmatrix}_{2} D)\begin{bmatrix} & & \\ HO & \\ & H_2O & \\ &$$

$$D) \begin{bmatrix} OH & H \\ HO & H \\ H_2O & H \end{bmatrix} SO_4^{2-}$$

An asymmetric synthesis of albuterol resulted in a mixture that was 75% (R) and 25% (S). What is the expected specific rotation of this mixture? Albuterol $[\alpha]_{20}^D$ –32.2 (c = 0.1 in water)

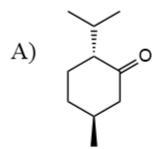
A) mixture
$$[\alpha]_{20}^{D} = -24.2$$

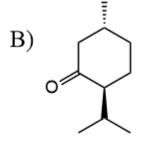
B) mixture
$$[\alpha]_{20}^{D} = +24.2$$

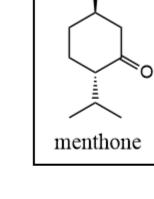
C) mixture
$$[\alpha]_{20}^{D} = +16.1$$

D) mixture
$$[\alpha]_{20}^{D} = -16.1$$

Determine whether or not each of the following is optically active.


4	Determine whether of not each of the following is optically active.				
	a molecule with one chiral center		(+)-Starkyne	racemic tartaric acid	HO CI
	A)	optically active	optically active	optically inactive	optically active
	B)	optically active	optically active	optically inactive	optically inactive
	C)	optically inactive	optically active	optically inactive	optically inactive
	D)	can't tell	can't tell	can't tell	optically inactive
	E)	can't tell	can't tell	can't tell	optically active


Identify all the chiral centers in lysergic acid diethylamide (LSD). Mark each with *.
LSD has how many possible stereoisomers?


lysergic acid diethylamide (LSD)

- Number of isomers?
 - A) 2
 - B) 4
 - C) 8
 - D) 16
 - E) 32

Identify the drawing that does NOT represent the **enantiomer** of menthone.

7

Which of the following statements is NOT true about a given sample of (R)-acid that has a specific rotation [α] = -45 and 90% ee?

90% ee sample of (R)-acid has

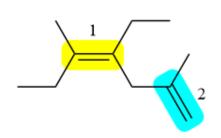

(R)-acid $[\alpha] = -45$

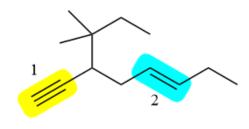
- A) The sample is optically active.
- B) Pure (R)-acid would have $[\alpha] = -50$.
- C) The sample contains 90% (R) enantiomer and 10% racemic mixture.
- D) The sample contains 95% (R) enantiomer and 5% (S) enantiomer.
- E) The (S)-acid enantiomer is levorotatory.

What is the configuration of the marked (*) carbon?

- A) R
- B) S
- C) neither (it is achiral)

8




9

$$CH_2OH$$

10a

10b

1

2

1

2

A) E

Z

Z

A) neither

E

B) Z

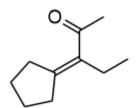
B) neither

Z

C) *E*

- neither
- C) Z

E


D) Z

- neither
- D) Z

Z

Determine the configuration of the given alkene.

10c

- A) *E*
- B) Z
- C) neither (non-stereoisomeric)
- D) neither (achiral)