Library of Organic Chemistry Active Learning Resources LOCAL

Chapter 3 Acid-Base Reactions (Proton Transfer) - Part 2

1

Arrange the following compounds in order of INCREASING acid strength (from least acidic to most acidic).

Chapter 3 Acid-Base Reactions (Proton Transfer), Part 2 – Practice Problems

2 Is hydroxide a strong enough base to deprotonate acetic acid (CH₃CO₂H)? Explain.

3

Which is the stronger acid? Explain briefly.

$$HO \longrightarrow CN$$
 $HO \longrightarrow CH_3$

4

Which is the stronger base? Explain briefly.

$$NH_3$$
 NH_2 ammonia aniline

Given the pK_a values shown, in which direction does the equilibrium lie? Explain briefly. (next, try it without pK_a !)

$$^{\oplus}$$
NH₄ + H₂O \Longrightarrow NH₃ + H₃O $^{\oplus}$
p K_a 9 16 36 -2

6

Which is the stronger base? Explain briefly.

$$HO^{\ominus}$$
 CH_3 $C-O^{\ominus}$ hydroxide acetate

7 Is hydroxide a strong enough base to deprotonate methane (CH₄)? Explain.

Is chloride a strong enough base to deprotonate ammonium (NH₄⁺)? **A** = Yes; **B** = No

Arrange the following compounds in order of INCREASING acid strength (from least acidic to most acidic).

- A) III < II < I
- B) III < I < II
- C) I < III < II
- D) II < III < I
- E) I < II < III

2

Is hydroxide a strong enough base to deprotonate acetic acid (CH₃CO₂H)? Explain.

- A) Because hydroxide is less stable than this: CH₃ C O hydroxide is a suitable base to deprotonate acetic acid.
- B) Because hydroxide is less stable than this: $CH_3 C O^{\odot}$ hydroxide is NOT a suitable base to deprotonate acetic acid.
- C) Because hydroxide is less stable than this: CH₃-C-OH hydroxide is a suitable base to deprotonate acetic acid.
- D) Because hydroxide is less stable than this: CH3-C-OH hydroxide is NOT a suitable base to deprotonate acetic acid.

Which is the stronger acid? Explain briefly.

$$HO \longrightarrow CN$$
 $HO \longrightarrow CH_3$

- A) **A** is the stronger acid because HO—CN is **more** stable.
- B) **A** is the stronger acid because of CN is **more** stable.
- C) **B** is the stronger acid because is **more** stable. $HO \longrightarrow CH_3$
- D) **B** is the stronger acid because \bigcirc CH₃ is **more** stable.

Which is the stronger base? Explain briefly.

- A) Because this is more stable: aniline is the stronger base.
- B) Because this is more stable: aniline is the stronger base.
- C) Because this is more stable: ammonia is the stronger base.
- D) Because this is more stable: ${}^{\bigcirc}_{NH_2}$
- E) Because this is more stable: aniline is the stronger base.

Given the pK_a values shown, in which direction does the equilibrium lie? Explain briefly. (next, try it without pK_a !)

$$^{\oplus}$$
NH₄ + H₂O \Longrightarrow NH₃ + H₃O $^{\oplus}$ p K_a 9 16 36 -2

- A) Forward, because the combined pK_a 25 is lower than 34.
- B) Reverse, because the combined pK_a 25 is lower than 34.
- C) Forward, because -2 is lower than 9.
- D) Reverse, because -2 is lower than 9.
- E) Neither, because the charges are balanced.

Which is the stronger base? Explain briefly.

$$HO^{\scriptsize{\bigcirc}}$$
 CH_3 $C-O^{\scriptsize{\bigcirc}}$ hydroxide acetate

- A) Because this is more stable: H-O-H hydroxide is the stronger base.
- B) Because this is more stable: $H-0^{\bigcirc}$ hydroxide is the weaker base.
- C) Because this is more stable: $CH_3 C OH$ acetate is the stronger base.
- D) Because this is more stable: $_{CH_3}$ $_{C-0}^{\circ}$ acetate is the weaker base.
- E) It's impossible to predict base strength without pK_b data.

Is hydroxide a strong enough base to deprotonate methane (CH₄)? Explain.

- A) Because hydroxide is more stable than H_3C^{\bigcirc} , hydroxide is a suitable base to deprotonate methane.
- B) Because hydroxide is less stable than H_3C^{\bigcirc} , hydroxide is a suitable base to deprotonate methane.
- C) Because hydroxide is more stable than H_3C^{\bigcirc} , hydroxide is NOT a suitable base to deprotonate methane.
- D) Because hydroxide is less stable than H₃C[⊙], hydroxide is NOT a suitable base to deprotonate methane.
- E) It's impossible to predict the direction of the equilibrium without pK_a data.

Group work: Is chloride a strong enough base to deprotonate ammonium (NH_4^+) ? Explain.

8