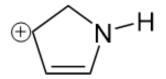
Library of Organic Chemistry Active Learning Resources LOCAL

Chapter 2 Drawing Structures & Resonance - Part 2

Group work: provide curved arrows to convert one resonance structure to the next, rank the given resonance forms (e.g., most important, least important, equal contributors, etc.), briefly explain the ranking, and draw the resonance hybrid.


hybrid:

Try SkillBuilders 2.5, 2.6

Which resonance structure contributes more to the resonance hybrid? Explain briefly.

$$H-\ddot{O}_{C} \oplus_{C} CH_{3}$$
 $H-\ddot{O}_{C} \oplus_{C} CH_{3}$
 $X CH_{3}$
 $Y CH_{3}$

4 Draw resonance structures for the following cation.

Hybridization and Resonance: Localized and Delocalized Lone Pairs (Klein 2.13)

A lone pair that is involved in resonance is described as being ______ because it is spread out over multiple atoms.

A _____ lone pair is at a single location (not involved in resonance).

Group work: Add all missing lone pairs, and identify each as localized (L) or delocalized (D).

Fentanyl - an addictive painkiller. This synthetic opioid is a leading cause of overdose deaths in U.S.

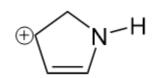
Theobromine - makes chocolate toxic to dogs

Aspirin - pain-reliever and fever reducer, a nonsteroidal anti-inflammatory drug (NSAID) that has been on the market since 1899

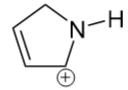
Vanillin - primary component of extracts of vanilla bean, used as artificial flavoring **Carvone** - smells and tastes like either spearmint or caraway!

Try SkillBuilder 2.9

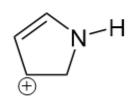
Note: "R" represents any carbon group.

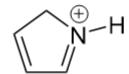

	Functional Group	Example	<u>Abbreviation</u>	Name
	alkane	CH ₄	RH	methane
CHM3150 CHM3140	alkyl halide	CH ₃ CI	RX or RC1	chloromethane (methyl chloride)
	alkene	$H_2C=CH_2$	R_2CCR_2	ethene (ethylene)
	alkyne –	HC≡CH	RCCR	ethyne (acetylene)
	alcohol	CH₃OH	ROH	methanol (methyl alcohol)
	ether	CH₃OCH₃	ROR or R ₂ O	methoxymethane (dimethyl ether)
	amine	CH₃NH₂ O	R_3N	methanamine (methyl amine)
	aldehyde	CH₃-C-H	RCHO	ethanal (acetaldehyde)
	ketone	CH₃-C-CH₃	RCOR or R ₂ CO	2-propanone (acetone)
	carboxylic acid	CH₃-C-OH	RCO_2H	ethanoic acid (acetic acid)
	acid chloride (acyl halide)	CH ₃ -C-CI	RCOC1	ethanoyl chloride (acetyl chloride)
	ester	CH₃-C-OCH₃	RCO ₂ R	methyl ethanoate (methyl acetate)
	amide	O CH ₃ -C-NH ₂	$RCONR_2$	ethanamide (acetamide)
	anhydride	О О СН ₃ -С-О-С-СН ₃	RCO ₂ COR or (RCO) ₂ O	ethanoic anhydride (acetic anhydride)
	nitrile	CH₃CN	RCN	ethanenitrile (acetonitrile)
	aromatic		ArH	benzene

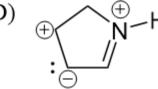
Which resonance structure contributes more to the resonance hybrid? Explain briefly.


$$H-\ddot{O} \ CH_3$$
 $H-\ddot{O} \ CH_3$
 $H-\ddot{O} \ CH_3$
 $H-\ddot{O} \ CH_3$

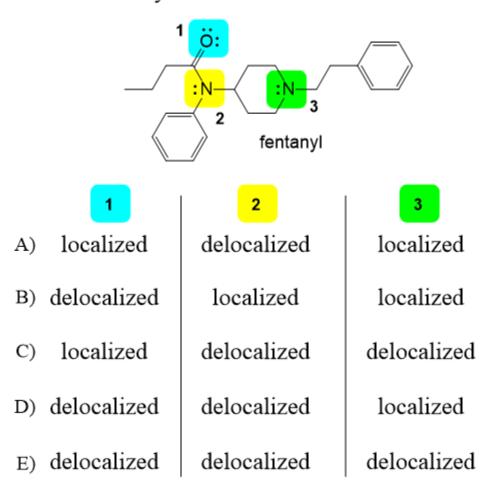
- A) X because carbon better handles positive charge (C less electronegative)
- B) Y because oxygen better handles positive charge (O more electronegative)
- C) Y because oxygen better handles positive charge (O is larger).
- D) X because Y is missing an octet.
- E) Y because X is missing an octet.

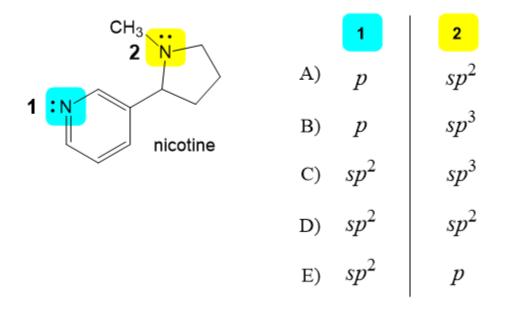

4


Which of the following is NOT a resonance form of the compound given above?



 \mathbf{C}


B)



6

Identify each of the lone pairs in fentanyl as localized or delocalized.

Identify the orbital occupied by the lone pair on each of the indicated nitrogen atoms in nicotine.

