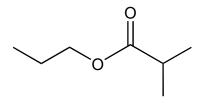
CHM 3140, Spring 2022 Dr. Laurie S. Starkey

¹³ C NMR: Carbons			
Type of carbon	δ (ppm)	Type of carbon δ (ppm)	
R-CH ₃	10-30	0	
c-o	40-80	R-Ü-OR	
RC≡CR	65-90	0 165-185	
R ₂ C=CR ₂	100-150	R-C-NH ₂ J	
	110-170	R-C-R/H 185-220	

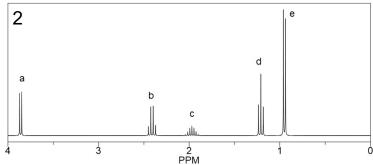
6A. (6 pts) On the given compound, label each unique type of carbon atom a/b/c/etc., and answer the two questions below.

1. How many signals are expected in the ¹³C NMR spectrum?

2. Do you expect any signals in the ¹³C NMR spectrum to be above 170 ppm? Explain briefly.


Exam II Page 6 of 6


¹ H NMR Protons on Carbon			
Type of C-H	δ (ppm)		
R−CH ₃	0.9		
R-CH ₂ -R	1.3		
R ₃ C-H	1.5-2		
CH ₃	1.8		
CH ₃ O R-C-CH ₃	2-2.3		
Ar – CH ₃	2.3		
RC≣C−H	2.5		
R_2N-CH_3	2-3		
$R-CH_2-X$	3-3.5		
RO−CH ₃	3.8		
R-CH ₂ -F H	4.5		
R ₂ C=CR	5-5.3		
Ar—H	7.3		
O II R-C-H	9.7		
Protons on Oxygen			
Type of H	δ (ppm)		
ROH	0.5-5		
ArOH	4-7		
0			
R−Ö−OH	10-13		


6B. (8 pts) Select the ¹H NMR spectrum that corresponds to the given compound, and then match the labeled peaks in the spectrum with each set of protons on the structure provided. (Label the protons on the structure a/b/c/d/e)

Correct spectrum (1 or 2):

