Dr. Laurie S. Starkey, CHM 3140 Organic Chemistry I, Cal Poly Pomona
1 Exam II Review - Practice Problems
Draw the most stable chair conformation of trans-1-iodo-2-methylcyclohexane.
axial groups have 1,13 -

more stable with group equatorial (ussteries)

Predict the direction of the equilibrium (forward, reverse or neither). Hint: consider Newman projections.
2

staggered (mane stable)

Draw all stereoisomers of the given compound:

Determine relationship between given pairs:
A) constitutional isomers
B) enantiomers
C) diastereomers
D) the same compound
E) unrelated

vs.

1 same 2
3 event. 4

(D) ${ }^{5}$

VS.

IUPAC name of this compound? (Include stereochemistry)

(25,35)-2,3-dichens-3-methylpentane

4 Determine whether or not each compound below is optically active. Explain.
(10) trans-1,3-diisopropylcyclobutane
trans-1,2-diisopropylcyclobutane yes

$$
\begin{aligned}
& \text { plane } \\
& \text { symmetry } \\
& 5 \text { Doctrinal } \\
& \text { optically } \\
& \text { inactive }
\end{aligned}
$$

5 Determine whether or not each compound below has an enantiomer. Explain.

active
5 (NOunal $\mathrm{Cl}-\mathrm{H}=\mathrm{H}-\mathrm{CH}_{3}$

For each compound, draw all the constitutional isomers with the given carbon chain, plus one chlorine atom. Name each compound and mark all chiral centers with an asterisk $\left(^{*}\right)$. (Work on a separate page)

6
Which would be better to distinguish the following compounds, ${ }^{1} \mathrm{H}$ or ${ }^{13} \mathrm{C}$ NMR (or are they equally suitable)? Explain, and describe the differences) to look for.

7 Which compound gives the following ${ }^{1} \mathrm{H}$ NMR spectrum? (Klein text problem 15.75)

(A)

C)

E) unrelated

10

athene e $C_{1}-C_{2}$
A) constitutional isomers
B) enantiomers
C) diastereomers
D) the same compound

D)

not achinal center!!

only 2 unique positions (attach Cleacarb)

$$
\left.{ }_{F_{*}^{*}}^{\prime}\right]^{4}(\text { onechiral })
$$

1-chlow-2,3-dimethylbutane
$u 7_{1}^{1} 3^{\frac{4}{4}}$ (no chiral centers)
2-chkero-2,3-dimethylbutane

five unique portions $\rightarrow 5$ constitutional isomers
(a) $e^{2} \underbrace{2}_{4} \square_{5}^{3}$

1-chlono-4-methylcyclohexane
(no chiral centers) (no chiral centers)
(b) 6_{5}^{4}

1 -chloro-3-methylcyclohexane
(2 chiral centers) (2 chiral centers)
(c) 5

1-chleso-2-methyl cyclohexane (2 chiral centers)
(d) \square

1-chloro-1-methylcyclohexane (no chiral centers)
(e)

(chlaromethyl) cyclohexane (no chiral centers)

* note: cabonim ring with attached l * note: cabby in ring with a to methyl
is \# because chloro comes before medically
alphabetic

